亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Semantic segmentation of Very High Resolution (VHR) remote sensing images is a fundamental task for many applications. However, large variations in the scales of objects in those VHR images pose a challenge for performing accurate semantic segmentation. Existing semantic segmentation networks are able to analyse an input image at up to four resizing scales, but this may be insufficient given the diversity of object scales. Therefore, Multi Scale (MS) test-time data augmentation is often used in practice to obtain more accurate segmentation results, which makes equal use of the segmentation results obtained at the different resizing scales. However, it was found in this study that different classes of objects had their preferred resizing scale for more accurate semantic segmentation. Based on this behaviour, a Stacking-Based Semantic Segmentation (SBSS) framework is proposed to improve the segmentation results by learning this behaviour, which contains a learnable Error Correction Module (ECM) for segmentation result fusion and an Error Correction Scheme (ECS) for computational complexity control. Two ECS, i.e., ECS-MS and ECS-SS, are proposed and investigated in this study. The Floating-point operations (Flops) required for ECS-MS and ECS-SS are similar to the commonly used MS test and the Single-Scale (SS) test, respectively. Extensive experiments on four datasets (i.e., Cityscapes, UAVid, LoveDA and Potsdam) show that SBSS is an effective and flexible framework. It achieved higher accuracy than MS when using ECS-MS, and similar accuracy as SS with a quarter of the memory footprint when using ECS-SS.

相關內容

多媒體系統(MS)期刊詳細介紹了多媒體計算,通信,存儲和應用的各個方面的創新研究思想,新興技術,最新方法和工具。它包含理論,實驗和調查文章。多媒體系統的覆蓋范圍包括:在計算機系統中集成數字視頻和音頻功能;多媒體信息編碼和數據交換格式;數字多媒體的操作系統機制;數字視頻和音頻網絡與通信;存儲模型和結構;用于支持多媒體應用程序的方法、范式、工具和軟件體系結構;多媒體應用程序和應用程序接口,以及多媒體終端系統架構。 官網地址:

Despite its fruitful applications in remote sensing, image super-resolution is troublesome to train and deploy as it handles different resolution magnifications with separate models. Accordingly, we propose a highly-applicable super-resolution framework called FunSR, which settles different magnifications with a unified model by exploiting context interaction within implicit function space. FunSR composes a functional representor, a functional interactor, and a functional parser. Specifically, the representor transforms the low-resolution image from Euclidean space to multi-scale pixel-wise function maps; the interactor enables pixel-wise function expression with global dependencies; and the parser, which is parameterized by the interactor's output, converts the discrete coordinates with additional attributes to RGB values. Extensive experimental results demonstrate that FunSR reports state-of-the-art performance on both fixed-magnification and continuous-magnification settings, meanwhile, it provides many friendly applications thanks to its unified nature.

In this work, instead of directly predicting the pixel-level segmentation masks, the problem of referring image segmentation is formulated as sequential polygon generation, and the predicted polygons can be later converted into segmentation masks. This is enabled by a new sequence-to-sequence framework, Polygon Transformer (PolyFormer), which takes a sequence of image patches and text query tokens as input, and outputs a sequence of polygon vertices autoregressively. For more accurate geometric localization, we propose a regression-based decoder, which predicts the precise floating-point coordinates directly, without any coordinate quantization error. In the experiments, PolyFormer outperforms the prior art by a clear margin, e.g., 5.40% and 4.52% absolute improvements on the challenging RefCOCO+ and RefCOCOg datasets. It also shows strong generalization ability when evaluated on the referring video segmentation task without fine-tuning, e.g., achieving competitive 61.5% J&F on the Ref-DAVIS17 dataset.

Semantic segmentation is a key technique involved in automatic interpretation of high-resolution remote sensing (HRS) imagery and has drawn much attention in the remote sensing community. Deep convolutional neural networks (DCNNs) have been successfully applied to the HRS imagery semantic segmentation task due to their hierarchical representation ability. However, the heavy dependency on a large number of training data with dense annotation and the sensitiveness to the variation of data distribution severely restrict the potential application of DCNNs for the semantic segmentation of HRS imagery. This study proposes a novel unsupervised domain adaptation semantic segmentation network (MemoryAdaptNet) for the semantic segmentation of HRS imagery. MemoryAdaptNet constructs an output space adversarial learning scheme to bridge the domain distribution discrepancy between source domain and target domain and to narrow the influence of domain shift. Specifically, we embed an invariant feature memory module to store invariant domain-level context information because the features obtained from adversarial learning only tend to represent the variant feature of current limited inputs. This module is integrated by a category attention-driven invariant domain-level context aggregation module to current pseudo invariant feature for further augmenting the pixel representations. An entropy-based pseudo label filtering strategy is used to update the memory module with high-confident pseudo invariant feature of current target images. Extensive experiments under three cross-domain tasks indicate that our proposed MemoryAdaptNet is remarkably superior to the state-of-the-art methods.

Semantic image segmentation (SiS) plays a fundamental role in a broad variety of computer vision applications, providing key information for the global understanding of an image. This survey is an effort to summarize two decades of research in the field of SiS, where we propose a literature review of solutions starting from early historical methods followed by an overview of more recent deep learning methods including the latest trend of using transformers. We complement the review by discussing particular cases of the weak supervision and side machine learning techniques that can be used to improve the semantic segmentation such as curriculum, incremental or self-supervised learning. State-of-the-art SiS models rely on a large amount of annotated samples, which are more expensive to obtain than labels for tasks such as image classification. Since unlabeled data is instead significantly cheaper to obtain, it is not surprising that Unsupervised Domain Adaptation (UDA) reached a broad success within the semantic segmentation community. Therefore, a second core contribution of this book is to summarize five years of a rapidly growing field, Domain Adaptation for Semantic Image Segmentation (DASiS) which embraces the importance of semantic segmentation itself and a critical need of adapting segmentation models to new environments. In addition to providing a comprehensive survey on DASiS techniques, we unveil also newer trends such as multi-domain learning, domain generalization, domain incremental learning, test-time adaptation and source-free domain adaptation. Finally, we conclude this survey by describing datasets and benchmarks most widely used in SiS and DASiS and briefly discuss related tasks such as instance and panoptic image segmentation, as well as applications such as medical image segmentation.

Continually learning to segment more and more types of image regions is a desired capability for many intelligent systems. However, such continual semantic segmentation suffers from the same catastrophic forgetting issue as in continual classification learning. While multiple knowledge distillation strategies originally for continual classification have been well adapted to continual semantic segmentation, they only consider transferring old knowledge based on the outputs from one or more layers of deep fully convolutional networks. Different from existing solutions, this study proposes to transfer a new type of information relevant to knowledge, i.e. the relationships between elements (Eg. pixels or small local regions) within each image which can capture both within-class and between-class knowledge. The relationship information can be effectively obtained from the self-attention maps in a Transformer-style segmentation model. Considering that pixels belonging to the same class in each image often share similar visual properties, a class-specific region pooling is applied to provide more efficient relationship information for knowledge transfer. Extensive evaluations on multiple public benchmarks support that the proposed self-attention transfer method can further effectively alleviate the catastrophic forgetting issue, and its flexible combination with one or more widely adopted strategies significantly outperforms state-of-the-art solutions.

Forgery facial images and videos have increased the concern of digital security. It leads to the significant development of detecting forgery data recently. However, the data, especially the videos published on the Internet, are usually compressed with lossy compression algorithms such as H.264. The compressed data could significantly degrade the performance of recent detection algorithms. The existing anti-compression algorithms focus on enhancing the performance in detecting heavily compressed data but less consider the compression adaption to the data from various compression levels. We believe creating a forgery detection model that can handle the data compressed with unknown levels is important. To enhance the performance for such models, we consider the weak compressed and strong compressed data as two views of the original data and they should have similar representation and relationships with other samples. We propose a novel anti-compression forgery detection framework by maintaining closer relations within data under different compression levels. Specifically, the algorithm measures the pair-wise similarity within data as the relations, and forcing the relations of weak and strong compressed data close to each other, thus improving the discriminate power for detecting strong compressed data. To achieve a better strong compressed data relation guided by the less compressed one, we apply video level contrastive learning for weak compressed data, which forces the model to produce similar representations within the same video and far from the negative samples. The experiment results show that the proposed algorithm could boost performance for strong compressed data while improving the accuracy rate when detecting the clean data.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal

北京阿比特科技有限公司