The traditional role of the network layer is the transfer of packet replicas from source to destination through intermediate network nodes. We present a generative network layer that uses Generative AI (GenAI) at intermediate or edge network nodes and analyze its impact on the required data rates in the network. We conduct a case study where the GenAI-aided nodes generate images from prompts that consist of substantially compressed latent representations. The results from network flow analyses under image quality constraints show that the generative network layer can achieve an improvement of more than 100% in terms of the required data rate.
In the streaming data setting, where data arrive continuously or in frequent batches and there is no pre-determined amount of total data, Bayesian models can employ recursive updates, incorporating each new batch of data into the model parameters' posterior distribution. Filtering methods are currently used to perform these updates efficiently, however, they suffer from eventual degradation as the number of unique values within the filtered samples decreases. We propose Generative Filtering, a method for efficiently performing recursive Bayesian updates in the streaming setting. Generative Filtering retains the speed of a filtering method while using parallel updates to avoid degenerate distributions after repeated applications. We derive rates of convergence for Generative Filtering and conditions for the use of sufficient statistics instead of fully storing all past data. We investigate the alleviation of filtering degradation through simulation and Ecological species count data.
RRAM crossbars have been studied to construct in-memory accelerators for neural network applications due to their in-situ computing capability. However, prior RRAM-based accelerators show efficiency degradation when executing the popular attention models. We observed that the frequent softmax operations arise as the efficiency bottleneck and also are insensitive to computing precision. Thus, we propose STAR, which boosts the computing efficiency with an efficient RRAM-based softmax engine and a fine-grained global pipeline for the attention models. Specifically, STAR exploits the versatility and flexibility of RRAM crossbars to trade off the model accuracy and hardware efficiency. The experimental results evaluated on several datasets show STAR achieves up to 30.63x and 1.31x computing efficiency improvements over the GPU and the state-of-the-art RRAM-based attention accelerators, respectively.
A hybrid continuum robot design is introduced that combines a proximal tendon-actuated section with a distal telescoping section comprised of permanent-magnet spheres actuated using an external magnet. While, individually, each section can approach a point in its workspace from one or at most several orientations, the two-section combination possesses a dexterous workspace. The paper describes kinematic modeling of the hybrid design and provides a description of the dexterous workspace. We present experimental validation which shows that a simplified kinematic model produces tip position mean and maximum errors of 3% and 7% of total robot length, respectively.
Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios. While distributed DNNs have been studied, to the best of our knowledge the resilience of distributed DNNs to adversarial action still remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and introduce two new measurements for distortion and robustness. Our theoretical findings indicate that (i) assuming the same level of information distortion, latent features are always more robust than input representations; (ii) the adversarial robustness is jointly determined by the feature dimension and the generalization capability of the DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks to the ImageNet-1K dataset. Our experimental results support our theoretical findings by showing that the compressed latent representations can reduce the success rate of adversarial attacks by 88% in the best case and by 57% on the average compared to attacks to the input space.
Large language models (LLMs) have exhibited an array of reasoning capabilities but face challenges like error propagation and hallucination, particularly in specialised areas like finance, where data is heterogeneous, and precision is paramount. We explore the potential of language model augmentation with external tools to mitigate these limitations and offload certain reasoning steps to external tools that are more suited for the task, instead of solely depending on the LLM's inherent abilities. More concretely, using financial domain question-answering datasets, we apply supervised fine-tuning on a LLaMA-2 13B Chat model to act both as a 'task router' and 'task solver'. The 'task router' dynamically directs a question to either be answered internally by the LLM or externally via the right tool from the tool set. Our tool-equipped SFT model, Raven, demonstrates an improvement of 35.2% and 5.06% over the base model and SFT-only baselines, respectively, and is highly competitive with strong GPT-3.5 results. To the best of our knowledge, our work is the first that investigates tool augmentation of language models for the finance domain.
Recent developments in transformer-based language models have allowed them to capture a wide variety of world knowledge that can be adapted to downstream tasks with limited resources. However, what pieces of information are understood in these models is unclear, and neuron-level contributions in identifying them are largely unknown. Conventional approaches in neuron explainability either depend on a finite set of pre-defined descriptors or require manual annotations for training a secondary model that can then explain the neurons of the primary model. In this paper, we take BERT as an example and we try to remove these constraints and propose a novel and scalable framework that ties textual descriptions to neurons. We leverage the potential of generative language models to discover human-interpretable descriptors present in a dataset and use an unsupervised approach to explain neurons with these descriptors. Through various qualitative and quantitative analyses, we demonstrate the effectiveness of this framework in generating useful data-specific descriptors with little human involvement in identifying the neurons that encode these descriptors. In particular, our experiment shows that the proposed approach achieves 75% precision@2, and 50% recall@2
Deep neural networks are vulnerable to adversarial samples. Adversarial fine-tuning methods aim to enhance adversarial robustness through fine-tuning the naturally pre-trained model in an adversarial training manner. However, we identify that some latent features of adversarial samples are confused by adversarial perturbation and lead to an unexpectedly increasing gap between features in the last hidden layer of natural and adversarial samples. To address this issue, we propose a disentanglement-based approach to explicitly model and further remove the latent features that cause the feature gap. Specifically, we introduce a feature disentangler to separate out the latent features from the features of the adversarial samples, thereby boosting robustness by eliminating the latent features. Besides, we align features in the pre-trained model with features of adversarial samples in the fine-tuned model, to further benefit from the features from natural samples without confusion. Empirical evaluations on three benchmark datasets demonstrate that our approach surpasses existing adversarial fine-tuning methods and adversarial training baselines.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.