Tree-based methods are powerful nonparametric techniques in statistics and machine learning. However, their effectiveness, particularly in finite-sample settings, is not fully understood. Recent applications have revealed their surprising ability to distinguish transformations (which we call symbolic feature selection) that remain obscure under current theoretical understanding. This work provides a finite-sample analysis of tree-based methods from a ranking perspective. We link oracle partitions in tree methods to response rankings at local splits, offering new insights into their finite-sample behavior in regression and feature selection tasks. Building on this local ranking perspective, we extend our analysis in two ways: (i) We examine the global ranking performance of individual trees and ensembles, including Classification and Regression Trees (CART) and Bayesian Additive Regression Trees (BART), providing finite-sample oracle bounds, ranking consistency, and posterior contraction results. (ii) Inspired by the ranking perspective, we propose concordant divergence statistics $\mathcal{T}_0$ to evaluate symbolic feature mappings and establish their properties. Numerical experiments demonstrate the competitive performance of these statistics in symbolic feature selection tasks compared to existing methods.
Selective state space models (SSMs) represented by Mamba have demonstrated their computational efficiency and promising outcomes in various tasks, including automatic speech recognition (ASR). Mamba has been applied to ASR task with the attention-based encoder-decoder framework, where the cross-attention mechanism between encoder and decoder remains. This paper explores the capability of Mamba as the decoder-only architecture in ASR task. Our MAmba-based DEcoder-ONly approach (MADEON) consists of a single decoder that takes speech tokens as a condition and predicts text tokens in an autoregressive manner. To enhance MADEON, we further propose speech prefixing that performs bidirectional processing on speech tokens, which enriches the contextual information in the hidden states. Our experiments show that MADEON significantly outperforms a non-selective SSM. The combination of speech prefixing and the recently proposed Mamba-2 yields comparable performance to Transformer-based models on large datasets.
Swarm behaviour engineering is an area of research that seeks to investigate methods and techniques for coordinating computation and action within groups of simple agents to achieve complex global goals like pattern formation, collective movement, clustering, and distributed sensing. Despite recent progress in the analysis and engineering of swarms (of drones, robots, vehicles), there is still a need for general design and implementation methods and tools that can be used to define complex swarm behaviour in a principled way. To contribute to this quest, this article proposes a new field-based coordination approach, called MacroSwarm, to design and program swarm behaviour in terms of reusable and fully composable functional blocks embedding collective computation and coordination. Based on the macroprogramming paradigm of aggregate computing, MacroSwarm builds on the idea of expressing each swarm behaviour block as a pure function, mapping sensing fields into actuation goal fields, e.g., including movement vectors. In order to demonstrate the expressiveness, compositionality, and practicality of MacroSwarm as a framework for swarm programming, we perform a variety of simulations covering common patterns of flocking, pattern formation, and collective decision-making. The implications of the inherent self-stabilisation properties of field-based computations in MacroSwarm are discussed, which formally guarantee some resilience properties and guided the design of the library.
The rapid advancement of machine learning has unlocked numerous opportunities for materials science, particularly in accelerating the design and analysis of materials. However, a significant challenge lies in the scarcity and high cost of obtaining high-quality materials datasets. In other fields, such as natural language processing, foundation models pre-trained on large datasets have achieved exceptional success in transfer learning, effectively leveraging latent features to achieve high performance on tasks with limited data. Despite this progress, the concept of foundation models remains underexplored in materials science. Here, we present a foundation model specifically designed for composite materials. Our model is pre-trained on a dataset of short-fiber composites to learn robust latent features. During transfer learning, the MMAE accurately predicts homogenized stiffness, with an R2 score reaching as high as 0.959 and consistently exceeding 0.91, even when trained on limited data. These findings validate the feasibility and effectiveness of foundation models in composite materials. We anticipate extending this approach to more complex three-dimensional composite materials, polycrystalline materials, and beyond. Moreover, this framework enables high-accuracy predictions even when experimental data are scarce, paving the way for more efficient and cost-effective materials design and analysis.
Unlike traditional mesh-based approximations of differential operators, machine learning methods, which exploit the automatic differentiation of neural networks, have attracted increasing attention for their potential to mitigate stability issues encountered in the numerical simulation of hyperbolic conservation laws. However, solutions to hyperbolic problems are often piecewise smooth, rendering the differential form invalid along discontinuity interfaces and limiting the effectiveness of standard learning approaches. In this work, we propose lift-and-embed learning methods for solving scalar hyperbolic equations with discontinuous solutions, which consist of (i) embedding the Rankine-Hugoniot jump condition within a higher-dimensional space through the inclusion of an augmented variable in the solution ansatz; (ii) utilizing physics-informed neural networks to manage the increased dimensionality and to address both linear and quasi-linear problems within a unified learning framework; and (iii) projecting the trained network solution back onto the original lower-dimensional plane to obtain the approximate solution. Besides, the location of discontinuity can be parametrized as extra model parameters and inferred concurrently with the training of network solution. With collocation points sampled on piecewise surfaces rather than distributed over the entire lifted space, we conduct numerical experiments on various benchmark problems to demonstrate the capability of our methods in resolving discontinuous solutions without spurious numerical smearing and oscillations.
Content moderation typically combines the efforts of human moderators and machine learning models. However, these systems often rely on data where significant disagreement occurs during moderation, reflecting the subjective nature of toxicity perception. Rather than dismissing this disagreement as noise, we interpret it as a valuable signal that highlights the inherent ambiguity of the content,an insight missed when only the majority label is considered. In this work, we introduce a novel content moderation framework that emphasizes the importance of capturing annotation disagreement. Our approach uses multitask learning, where toxicity classification serves as the primary task and annotation disagreement is addressed as an auxiliary task. Additionally, we leverage uncertainty estimation techniques, specifically Conformal Prediction, to account for both the ambiguity in comment annotations and the model's inherent uncertainty in predicting toxicity and disagreement.The framework also allows moderators to adjust thresholds for annotation disagreement, offering flexibility in determining when ambiguity should trigger a review. We demonstrate that our joint approach enhances model performance, calibration, and uncertainty estimation, while offering greater parameter efficiency and improving the review process in comparison to single-task methods.
Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).