亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

De-homogenization is becoming an effective method to significantly expedite the design of high-resolution multiscale structures, but existing methods have thus far been confined to simple static compliance minimization. There are two critical challenges to be addressed in accommodating general cases: enabling the design of unit-cell orientation and using free-form microstructures. In this paper, we propose a data-driven de-homogenization method that allows effective design of the unit-cell orientation angles and conformal mapping of spatially varying, complex microstructures. We devise a parameterized microstructure composed of rods in different directions to provide more diversity in stiffness while retaining geometrical simplicity. The microstructural geometry-property relationship is then surrogated by a neural network to avoid costly homogenization. A Cartesian representation of the unit-cell orientation is incorporated into homogenization-based optimization to design the angles. Corresponding high-resolution multiscale structures are obtained from the homogenization-based designs through a conformal mapping constructed with sawtooth function fields. This allows us to assemble complex microstructures with an oriented and compatible tiling pattern, while preserving the local homogenized properties. To demonstrate our method with a specific application, we optimize the frequency response of structures under harmonic excitations within a given frequency range. It is the first time that a sawtooth function is applied in a de-homogenization framework for complex design scenarios beyond static compliance minimization. The examples illustrate that multiscale structures can be generated with high efficiency and much better dynamic performance compared with the macroscale-only optimization. Beyond frequency response design, our proposed framework can be applied to other general problems.

相關內容

Quantifying the data uncertainty in learning tasks is often done by learning a prediction interval or prediction set of the label given the input. Two commonly desired properties for learned prediction sets are \emph{valid coverage} and \emph{good efficiency} (such as low length or low cardinality). Conformal prediction is a powerful technique for learning prediction sets with valid coverage, yet by default its conformalization step only learns a single parameter, and does not optimize the efficiency over more expressive function classes. In this paper, we propose a generalization of conformal prediction to multiple learnable parameters, by considering the constrained empirical risk minimization (ERM) problem of finding the most efficient prediction set subject to valid empirical coverage. This meta-algorithm generalizes existing conformal prediction algorithms, and we show that it achieves approximate valid population coverage and near-optimal efficiency within class, whenever the function class in the conformalization step is low-capacity in a certain sense. Next, this ERM problem is challenging to optimize as it involves a non-differentiable coverage constraint. We develop a gradient-based algorithm for it by approximating the original constrained ERM using differentiable surrogate losses and Lagrangians. Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly over existing approaches in several applications such as prediction intervals with improved length, minimum-volume prediction sets for multi-output regression, and label prediction sets for image classification.

We consider generalized Nash equilibrium problems (GNEPs) with non-convex strategy spaces and non-convex cost functions. This general class of games includes the important case of games with mixed-integer variables for which only a few results are known in the literature. We present a new approach to characterize equilibria via a convexification technique using the Nikaido-Isoda function. To any given instance of the GNEP, we construct a set of convexified instances and show that a feasible strategy profile is an equilibrium for the original instance if and only if it is an equilibrium for any convexified instance and the convexified cost functions coincide with the initial ones. We further develop this approach along three dimensions. We first show that for quasi-linear models, where a convexified instance exists in which for fixed strategies of the opponent players, the cost function of every player is linear and the respective strategy space is polyhedral, the convexification reduces the GNEP to a standard (non-linear) optimization problem. Secondly, we derive two complete characterizations of those GNEPs for which the convexification leads to a jointly constrained or a jointly convex GNEP, respectively. These characterizations require new concepts related to the interplay of the convex hull operator applied to restricted subsets of feasible strategies and may be interesting on their own. Finally, we demonstrate the applicability of our results by presenting a numerical study regarding the computation of equilibria for a class of integral network flow GNEPs.

We propose a novel neural representation for videos (NeRV) which encodes videos in neural networks. Unlike conventional representations that treat videos as frame sequences, we represent videos as neural networks taking frame index as input. Given a frame index, NeRV outputs the corresponding RGB image. Video encoding in NeRV is simply fitting a neural network to video frames and decoding process is a simple feedforward operation. As an image-wise implicit representation, NeRV output the whole image and shows great efficiency compared to pixel-wise implicit representation, improving the encoding speed by 25x to 70x, the decoding speed by 38x to 132x, while achieving better video quality. With such a representation, we can treat videos as neural networks, simplifying several video-related tasks. For example, conventional video compression methods are restricted by a long and complex pipeline, specifically designed for the task. In contrast, with NeRV, we can use any neural network compression method as a proxy for video compression, and achieve comparable performance to traditional frame-based video compression approaches (H.264, HEVC \etc). Besides compression, we demonstrate the generalization of NeRV for video denoising. The source code and pre-trained model can be found at //github.com/haochen-rye/NeRV.git.

Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however led to increased performance (local optima) without significant architectural breakthroughs, thus preventing truly novel solutions from being reached. In this work we 1) are the first to investigate casting NAS as a problem of finding the optimal network generator and 2) we propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types, yet only requiring few continuous hyper-parameters. This greatly reduces the dimensionality of the problem, enabling the effective use of Bayesian Optimisation as a search strategy. At the same time, we expand the range of valid architectures, motivating a multi-objective learning approach. We demonstrate the effectiveness of this strategy on six benchmark datasets and show that our search space generates extremely lightweight yet highly competitive models.

Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, i.e., the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, a novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the data features and input graph topology is extracted as supplementary supervision signals for SSL via using a graph generative loss related to the input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm compared with other state-of-the-art methods.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Accurately classifying malignancy of lesions detected in a screening scan plays a critical role in reducing false positives. Through extracting and analyzing a large numbers of quantitative image features, radiomics holds great potential to differentiate the malignant tumors from benign ones. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. This work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers both sensitivity and specificity simultaneously as the objective functions during the feature selection. In MO-FS, we developed a modified entropy based termination criterion (METC) to stop the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning using the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, an adaptive mutation operation was developed to generate the mutation probability in MO-FS automatically. The MO-FS was evaluated for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Compared with other commonly used feature selection methods, the experimental results for both lung nodule and breast lesion malignancy classification demonstrated that the feature set by selected MO-FS achieved better classification performance.

Hashing has been a widely-adopted technique for nearest neighbor search in large-scale image retrieval tasks. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, the cost of annotating data is often an obstacle when applying supervised hashing to a new domain. Moreover, the results can suffer from the robustness problem as the data at training and test stage could come from similar but different distributions. This paper studies the exploration of generating synthetic data through semi-supervised generative adversarial networks (GANs), which leverages largely unlabeled and limited labeled training data to produce highly compelling data with intrinsic invariance and global coherence, for better understanding statistical structures of natural data. We demonstrate that the above two limitations can be well mitigated by applying the synthetic data for hashing. Specifically, a novel deep semantic hashing with GANs (DSH-GANs) is presented, which mainly consists of four components: a deep convolution neural networks (CNN) for learning image representations, an adversary stream to distinguish synthetic images from real ones, a hash stream for encoding image representations to hash codes and a classification stream. The whole architecture is trained end-to-end by jointly optimizing three losses, i.e., adversarial loss to correct label of synthetic or real for each sample, triplet ranking loss to preserve the relative similarity ordering in the input real-synthetic triplets and classification loss to classify each sample accurately. Extensive experiments conducted on both CIFAR-10 and NUS-WIDE image benchmarks validate the capability of exploiting synthetic images for hashing. Our framework also achieves superior results when compared to state-of-the-art deep hash models.

Modeling and generating graphs is fundamental for studying networks in biology, engineering, and social sciences. However, modeling complex distributions over graphs and then efficiently sampling from these distributions is challenging due to the non-unique, high-dimensional nature of graphs and the complex, non-local dependencies that exist between edges in a given graph. Here we propose GraphRNN, a deep autoregressive model that addresses the above challenges and approximates any distribution of graphs with minimal assumptions about their structure. GraphRNN learns to generate graphs by training on a representative set of graphs and decomposes the graph generation process into a sequence of node and edge formations, conditioned on the graph structure generated so far. In order to quantitatively evaluate the performance of GraphRNN, we introduce a benchmark suite of datasets, baselines and novel evaluation metrics based on Maximum Mean Discrepancy, which measure distances between sets of graphs. Our experiments show that GraphRNN significantly outperforms all baselines, learning to generate diverse graphs that match the structural characteristics of a target set, while also scaling to graphs 50 times larger than previous deep models.

We study response generation for open domain conversation in chatbots. Existing methods assume that words in responses are generated from an identical vocabulary regardless of their inputs, which not only makes them vulnerable to generic patterns and irrelevant noise, but also causes a high cost in decoding. We propose a dynamic vocabulary sequence-to-sequence (DVS2S) model which allows each input to possess their own vocabulary in decoding. In training, vocabulary construction and response generation are jointly learned by maximizing a lower bound of the true objective with a Monte Carlo sampling method. In inference, the model dynamically allocates a small vocabulary for an input with the word prediction model, and conducts decoding only with the small vocabulary. Because of the dynamic vocabulary mechanism, DVS2S eludes many generic patterns and irrelevant words in generation, and enjoys efficient decoding at the same time. Experimental results on both automatic metrics and human annotations show that DVS2S can significantly outperform state-of-the-art methods in terms of response quality, but only requires 60% decoding time compared to the most efficient baseline.

北京阿比特科技有限公司