亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the complexity of learning quantum states in various models with respect to the stabilizer formalism and obtain the following results: - We prove that $\Omega(n)$ $T$-gates are necessary for any Clifford+$T$ circuit to prepare computationally pseudorandom quantum states, an exponential improvement over the previously known bound. This bound is asymptotically tight if linear-time quantum-secure pseudorandom functions exist. - Given an $n$-qubit pure quantum state $|\psi\rangle$ that has fidelity at least $\tau$ with some stabilizer state, we give an algorithm that outputs a succinct description of a stabilizer state that witnesses fidelity at least $\tau - \varepsilon$. The algorithm uses $O(n/(\varepsilon^2\tau^4))$ samples and $\exp\left(O(n/\tau^4)\right) / \varepsilon^2$ time. In the regime of $\tau$ constant, this algorithm estimates stabilizer fidelity substantially faster than the na\"ive $\exp(O(n^2))$-time brute-force algorithm over all stabilizer states. - In the special case of $\tau > \cos^2(\pi/8)$, we show that a modification of the above algorithm runs in polynomial time. - We improve the soundness analysis of the stabilizer state property testing algorithm due to Gross, Nezami, and Walter [Comms. Math. Phys. 385 (2021)]. As an application, we exhibit a tolerant property testing algorithm for stabilizer states. The underlying algorithmic primitive in all of our results is Bell difference sampling. To prove our results, we establish and/or strengthen connections between Bell difference sampling, symplectic Fourier analysis, and graph theory.

相關內容

Having the difficulty of solving the semantic gap between images and texts for the image captioning task, conventional studies in this area paid some attention to treating semantic concepts as a bridge between the two modalities and improved captioning performance accordingly. Although promising results on concept prediction were obtained, the aforementioned studies normally ignore the relationship among concepts, which relies on not only objects in the image, but also word dependencies in the text, so that offers a considerable potential for improving the process of generating good descriptions. In this paper, we propose a structured concept predictor (SCP) to predict concepts and their structures, then we integrate them into captioning, so as to enhance the contribution of visual signals in this task via concepts and further use their relations to distinguish cross-modal semantics for better description generation. Particularly, we design weighted graph convolutional networks (W-GCN) to depict concept relations driven by word dependencies, and then learns differentiated contributions from these concepts for following decoding process. Therefore, our approach captures potential relations among concepts and discriminatively learns different concepts, so that effectively facilitates image captioning with inherited information across modalities. Extensive experiments and their results demonstrate the effectiveness of our approach as well as each proposed module in this work.

With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approach

We present the framework of slowly varying regression under sparsity, allowing sparse regression models to exhibit slow and sparse variations. The problem of parameter estimation is formulated as a mixed-integer optimization problem. We demonstrate that it can be precisely reformulated as a binary convex optimization problem through a novel relaxation technique. This relaxation involves a new equality on Moore-Penrose inverses, convexifying the non-convex objective function while matching the original objective on all feasible binary points. This enables us to efficiently solve the problem to provable optimality using a cutting plane-type algorithm. We develop a highly optimized implementation of this algorithm, substantially improving upon the asymptotic computational complexity of a straightforward implementation. Additionally, we propose a fast heuristic method that guarantees a feasible solution and, as empirically illustrated, produces high-quality warm-start solutions for the binary optimization problem. To tune the framework's hyperparameters, we suggest a practical procedure relying on binary search that, under certain assumptions, is guaranteed to recover the true model parameters. On both synthetic and real-world datasets, we demonstrate that the resulting algorithm outperforms competing formulations in comparable times across various metrics, including estimation accuracy, predictive power, and computational time. The algorithm is highly scalable, allowing us to train models with thousands of parameters. Our implementation is available open-source at //github.com/vvdigalakis/SSVRegression.git.

The emerging field of quantum machine learning has the potential of revolutionizing our perspectives of quantum computing and artificial intelligence. In the predominantly empirical realm of quantum machine learning, a theoretical void persists. This paper addresses the gap by highlighting the quantum cross entropy, a pivotal counterpart to the classical cross entropy. We establish quantum cross entropy's role in quantum data compression, a fundamental machine learning task, by demonstrating that it acts as the compression rate for sub-optimal quantum source coding. Our approach involves a novel, universal quantum data compression protocol based on the quantum generalization of variable-length coding and the principle of quantum strong typicality. This reveals that quantum cross entropy can effectively serve as a loss function in quantum machine learning algorithms. Furthermore, we illustrate that the minimum of quantum cross entropy aligns with the von Neumann entropy, reinforcing its role as the optimal compression rate and underscoring its significance in advancing our understanding of quantum machine learning's theoretical framework.

Inverse reinforcement learning (IRL) seeks to learn the reward function from expert trajectories, to understand the task for imitation or collaboration thereby removing the need for manual reward engineering. However, IRL in the context of large, high-dimensional problems with unknown dynamics has been particularly challenging. In this paper, we present a new Variational Lower Bound for IRL (VLB-IRL), which is derived under the framework of a probabilistic graphical model with an optimality node. Our method simultaneously learns the reward function and policy under the learned reward function by maximizing the lower bound, which is equivalent to minimizing the reverse Kullback-Leibler divergence between an approximated distribution of optimality given the reward function and the true distribution of optimality given trajectories. This leads to a new IRL method that learns a valid reward function such that the policy under the learned reward achieves expert-level performance on several known domains. Importantly, the method outperforms the existing state-of-the-art IRL algorithms on these domains by demonstrating better reward from the learned policy.

Applying the representational power of machine learning to the prediction of complex fluid dynamics has been a relevant subject of study for years. However, the amount of available fluid simulation data does not match the notoriously high requirements of machine learning methods. Researchers have typically addressed this issue by generating their own datasets, preventing a consistent evaluation of their proposed approaches. Our work introduces a generation procedure for synthetic multi-modal fluid simulations datasets. By leveraging a GPU implementation, our procedure is also efficient enough that no data needs to be exchanged between users, except for configuration files required to reproduce the dataset. Furthermore, our procedure allows multiple modalities (generating both geometry and photorealistic renderings) and is general enough for it to be applied to various tasks in data-driven fluid simulation. We then employ our framework to generate a set of thoughtfully designed benchmark datasets, which attempt to span specific fluid simulation scenarios in a meaningful way. The properties of our contributions are demonstrated by evaluating recently published algorithms for the neural fluid simulation and fluid inverse rendering tasks using our benchmark datasets. Our contribution aims to fulfill the community's need for standardized benchmarks, fostering research that is more reproducible and robust than previous endeavors.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

北京阿比特科技有限公司