The recursive Neville algorithm allows one to calculate interpolating functions recursively. Upon a judicious choice of the abscissas used for the interpolation (and extrapolation), this algorithm leads to a method for convergence acceleration. For example, one can use the Neville algorithm in order to successively eliminate inverse powers of the upper limit of the summation from the partial sums of a given, slowly convergent input series. Here, we show that, for a particular choice of the abscissas used for the extrapolation, one can replace the recursive Neville scheme by a simple one-step transformation, while also obtaining access to subleading terms for the transformed series after convergence acceleration. The matrix-based, unified formulas allow one to estimate the rate of convergence of the partial sums of the input series to their limit. In particular, Bethe logarithms for hydrogen are calculated to 100 decimal digits.
Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.
This research explores the application of Large Language Models (LLMs) for automating the extraction of requirement-related legal content in the food safety domain and checking legal compliance of regulatory artifacts. With Industry 4.0 revolutionizing the food industry and with the General Data Protection Regulation (GDPR) reshaping privacy policies and data processing agreements, there is a growing gap between regulatory analysis and recent technological advancements. This study aims to bridge this gap by leveraging LLMs, namely BERT and GPT models, to accurately classify legal provisions and automate compliance checks. Our findings demonstrate promising results, indicating LLMs' significant potential to enhance legal compliance and regulatory analysis efficiency, notably by reducing manual workload and improving accuracy within reasonable time and financial constraints.
We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at //github.com/paihengxu/XICL.
We consider a graph coloring algorithm that processes vertices in order taken uniformly at random and assigns colors to them using First-Fit strategy. We show that this algorithm uses, in expectation, at most $(\frac{1}{2} + o(1))\cdot \ln n \,/\, \ln\ln n$ different colors to color any forest with $n$ vertices. We also construct a family of forests that shows that this bound is best possible.
We propose a new notion of uniqueness for the adversarial Bayes classifier in the setting of binary classification. Analyzing this notion of uniqueness produces a simple procedure for computing all adversarial Bayes classifiers for a well-motivated family of one dimensional data distributions. This characterization is then leveraged to show that as the perturbation radius increases, certain notions of regularity improve for adversarial Bayes classifiers. We demonstrate with various examples that the boundary of the adversarial Bayes classifier frequently lies near the boundary of the Bayes classifier.
Generative Commonsense Reasoning (GCR) requires a model to reason about a situation using commonsense knowledge, while generating coherent sentences. Although the quality of the generated sentences is crucial, the diversity of the generation is equally important because it reflects the model's ability to use a range of commonsense knowledge facts. Large Language Models (LLMs) have shown proficiency in enhancing the generation quality across various tasks through in-context learning (ICL) using given examples without the need for any fine-tuning. However, the diversity aspect in LLM outputs has not been systematically studied before. To address this, we propose a simple method that diversifies the LLM generations, while preserving their quality. Experimental results on three benchmark GCR datasets show that our method achieves an ideal balance between the quality and diversity. Moreover, the sentences generated by our proposed method can be used as training data to improve diversity in existing commonsense generators.
Pruning-at-Initialization (PaI) algorithms provide Sparse Neural Networks (SNNs) which are computationally more efficient than their dense counterparts, and try to avoid performance degradation. While much emphasis has been directed towards \emph{how} to prune, we still do not know \emph{what topological metrics} of the SNNs characterize \emph{good performance}. From prior work, we have layer-wise topological metrics by which SNN performance can be predicted: the Ramanujan-based metrics. To exploit these metrics, proper ways to represent network layers via Graph Encodings (GEs) are needed, with Bipartite Graph Encodings (BGEs) being the \emph{de-facto} standard at the current stage. Nevertheless, existing BGEs neglect the impact of the inputs, and do not characterize the SNN in an end-to-end manner. Additionally, thanks to a thorough study of the Ramanujan-based metrics, we discover that they are only as good as the \emph{layer-wise density} as performance predictors, when paired with BGEs. To close both gaps, we design a comprehensive topological analysis for SNNs with both linear and convolutional layers, via (i) a new input-aware Multipartite Graph Encoding (MGE) for SNNs and (ii) the design of new end-to-end topological metrics over the MGE. With these novelties, we show the following: (a) The proposed MGE allows to extract topological metrics that are much better predictors of the accuracy drop than metrics computed from current input-agnostic BGEs; (b) Which metrics are important at different sparsity levels and for different architectures; (c) A mixture of our topological metrics can rank PaI algorithms more effectively than Ramanujan-based metrics. The codebase is publicly available at //github.com/eliacunegatti/mge-snn.
We study the Renting Servers in the Cloud problem (RSiC) in multiple dimensions. In this problem, a sequence of multi-parameter jobs must be scheduled on servers that can be rented on-demand. Each job has an arrival time, a finishing time, and a multi-dimensional size vector that specifies its resource demands. Each server has a multi-dimensional capacity and jobs can be scheduled on a server as long as in each dimension the sum of sizes of jobs does not exceed the capacity of the server in that dimension. The goal is to minimize the total rental time of servers needed to process the job sequence. AF algorithms do not rent new servers to accommodate a job unless they have to. We introduce a sub-family of AF algorithms called monotone AF algorithms. We show this family have a tight competitive ratio of $Theta(d mu)$, where $d$ is the dimension of the problem and $mu$ is the ratio between the maximum and minimum duration of jobs in the input sequence. We also show that upper bounds for the RSiC problem obey the direct-sum property with respect to dimension $d$, that is we show how to transform $1$-dimensional algorithms for RSiC to work in the $d$-dimensional setting with competitive ratio scaling by a factor of $d$. As a corollary, we obtain an $O(d\sqrt{log mu})$ upper bound for $d$-dimensional clairvoyant RSiC. We also establish a lower bound of $\widetilde{Omega}(d mu)$ for both deterministic and randomized algorithms for $d$-dimensional non-clairvoyant RSiC, under the assumption that $mu \le log d - 2$. Lastly, we propose a natural greedy algorithm called Greedy. Greedy, is a clairvoyant algorithm belongs to the monotone AF family, achieves a competitive ratio of $Theta(d mu)$. Our experimental results indicate that Greedy performs better or matches all other existing algorithms, for almost all the settings of arrival rates and values of mu and $d$ that we implemented.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.