{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the Olsson.wl Mathematica package which aims to find linear transformations for some classes of multivariable hypergeometric functions. It is based on a well-known method developed by P. O. M. Olsson in J. Math. Phys. 5, 420 (1964) in order to derive the analytic continuations of the Appell $F_1$ double hypergeometric series from the linear transformations of the Gauss $_2F_1$ hypergeometric function. We provide a brief description of Olsson's method and demonstrate the commands of the package, along with examples. We also provide a companion package, called ROC2.wl and dedicated to the derivation of the regions of convergence of double hypergeometric series. This package can be used independently of Olsson.wl.

相關內容

In Statistical Relational Artificial Intelligence, a branch of AI and machine learning which combines the logical and statistical schools of AI, one uses the concept {\em para\-metrized probabilistic graphical model (PPGM)} to model (conditional) dependencies between random variables and to make probabilistic inferences about events on a space of "possible worlds". The set of possible worlds with underlying domain $D$ (a set of objects) can be represented by the set $\mathbf{W}_D$ of all first-order structures (for a suitable signature) with domain $D$. Using a formal logic we can describe events on $\mathbf{W}_D$. By combining a logic and a PPGM we can also define a probability distribution $\mathbb{P}_D$ on $\mathbf{W}_D$ and use it to compute the probability of an event. We consider a logic, denoted $PLA$, with truth values in the unit interval, which uses aggregation functions, such as arithmetic mean, geometric mean, maximum and minimum instead of quantifiers. However we face the problem of computational efficiency and this problem is an obstacle to the wider use of methods from Statistical Relational AI in practical applications. We address this problem by proving that the described probability will, under certain assumptions on the PPGM and the sentence $\varphi$, converge as the size of $D$ tends to infinity. The convergence result is obtained by showing that every formula $\varphi(x_1, \ldots, x_k)$ which contains only "admissible" aggregation functions (e.g. arithmetic and geometric mean, max and min) is asymptotically equivalent to a formula $\psi(x_1, \ldots, x_k)$ without aggregation functions.

This paper presents a control framework on Lie groups by designing the control objective in its Lie algebra. Control on Lie groups is challenging due to its nonlinear nature and difficulties in system parameterization. Existing methods to design the control objective on a Lie group and then derive the gradient for controller design are non-trivial and can result in slow convergence in tracking control. We show that with a proper left-invariant metric, setting the gradient of the cost function as the tracking error in the Lie algebra leads to a quadratic Lyapunov function that enables globally exponential convergence. In the PD control case, we show that our controller can maintain an exponential convergence rate even when the initial error is approaching $\pi$ in SO(3). We also show the merit of this proposed framework in trajectory optimization. The proposed cost function enables the iterative Linear Quadratic Regulator (iLQR) to converge much faster than the Differential Dynamic Programming (DDP) with a well-adopted cost function when the initial trajectory is poorly initialized on SO(3).

We introduce a family of pairwise stochastic gradient estimators for gradients of expectations, which are related to the log-derivative trick, but involve pairwise interactions between samples. The simplest example of our new estimator, dubbed the fundamental trick estimator, is shown to arise from either a) introducing and approximating an integral representation based on the fundamental theorem of calculus, or b) applying the reparameterisation trick to an implicit parameterisation under infinitesimal perturbation of the parameters. From the former perspective we generalise to a reproducing kernel Hilbert space representation, giving rise to a locality parameter in the pairwise interactions mentioned above, yielding our representer trick estimator. The resulting estimators are unbiased and shown to offer an independent component of useful information in comparison with the log-derivative estimator. We provide a further novel theoretical analysis which further characterises the variance reduction afforded by the new techniques. Promising analytical and numerical examples confirm the theory and intuitions behind the new estimators.

In large-scale recommender systems, the user-item networks are generally scale-free or expand exponentially. The latent features (also known as embeddings) used to describe the user and item are determined by how well the embedding space fits the data distribution. Hyperbolic space offers a spacious room to learn embeddings with its negative curvature and metric properties, which can well fit data with tree-like structures. Recently, several hyperbolic approaches have been proposed to learn high-quality representations for the users and items. However, most of them concentrate on developing the hyperbolic similitude by designing appropriate projection operations, whereas many advantageous and exciting geometric properties of hyperbolic space have not been explicitly explored. For example, one of the most notable properties of hyperbolic space is that its capacity space increases exponentially with the radius, which indicates the area far away from the hyperbolic origin is much more embeddable. Regarding the geometric properties of hyperbolic space, we bring up a \textit{Hyperbolic Regularization powered Collaborative Filtering} (HRCF) and design a geometric-aware hyperbolic regularizer. Specifically, the proposal boosts optimization procedure via the root alignment and origin-aware penalty, which is simple yet impressively effective. Through theoretical analysis, we further show that our proposal is able to tackle the over-smoothing problem caused by hyperbolic aggregation and also brings the models a better discriminative ability. We conduct extensive empirical analysis, comparing our proposal against a large set of baselines on several public benchmarks. The empirical results show that our approach achieves highly competitive performance and surpasses both the leading Euclidean and hyperbolic baselines by considerable margins. Further analysis verifies ...

In this article we implement a method for the computation of a nonlinear elliptic problem with nonstandard growth driven by the $p(x)-$Laplacian operator. Our implementation is based in the {\em decomposition--coordination} method that allows us, via an iterative process, to solve in each step a linear differential equation and a nonlinear algebraic equation. Our code is implemented in {\sc MatLab} in 2 dimensions and turns out to be extremely efficient from the computational point of view.

In this paper, the Lie symmetry analysis is proposed for a space-time convection-diffusion fractional differential equations with the Riemann-Liouville derivative by (2+1) independent variables and one dependent variable. We find a reduction form of our governed fractional differential equation using the similarity solution of our Lie symmetry. One-dimensional optimal system of Lie symmetry algebras is found. We present a computational method via the spectral method based on Bernstein's operational matrices to solve the two-dimensional fractional heat equation with some initial conditions.

Recent decades, the emergence of numerous novel algorithms makes it a gimmick to propose an intelligent optimization system based on metaphor, and hinders researchers from exploring the essence of search behavior in algorithms. However, it is difficult to directly discuss the search behavior of an intelligent optimization algorithm, since there are so many kinds of intelligent schemes. To address this problem, an intelligent optimization system is regarded as a simulated physical optimization system in this paper. The dynamic search behavior of such a simplified physical optimization system are investigated with quantum theory. To achieve this goal, the Schroedinger equation is employed as the dynamics equation of the optimization algorithm, which is used to describe dynamic search behaviours in the evolution process with quantum theory. Moreover, to explore the basic behaviour of the optimization system, the optimization problem is assumed to be decomposed and approximated. Correspondingly, the basic search behaviour is derived, which constitutes the basic iterative process of a simple optimization system. The basic iterative process is compared with some classical bare-bones schemes to verify the similarity of search behavior under different metaphors. The search strategies of these bare bones algorithms are analyzed through experiments.

Sufficient dimension reduction (SDR) is a successful tool in regression models. It is a feasible method to solve and analyze the nonlinear nature of the regression problems. This paper introduces the \textbf{itdr} R package that provides several functions based on integral transformation methods to estimate the SDR subspaces in a comprehensive and user-friendly manner. In particular, the \textbf{itdr} package includes the Fourier method (FM) and the convolution method (CM) of estimating the SDR subspaces such as the central mean subspace (CMS) and the central subspace (CS). In addition, the \textbf{itdr} package facilitates the recovery of the CMS and the CS by using the iterative Hessian transformation (IHT) method and the Fourier transformation approach for inverse dimension reduction method (invFM), respectively. Moreover, the use of the package is illustrated by three datasets. \textcolor{black}{Furthermore, this is the first package that implements integral transformation methods to estimate SDR subspaces. Hence, the \textbf{itdr} package may provide a huge contribution to research in the SDR field.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

北京阿比特科技有限公司
2F_1$ hypergeometric function. We provide a brief description of Olsson's method and demonstrate the commands of the package, along with examples. We also provide a companion package, called ROC2.wl and dedicated to the derivation of the regions of convergence of double hypergeometric series. This package can be used independently of Olsson.wl. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the Olsson.wl Mathematica package which aims to find linear transformations for some classes of multivariable hypergeometric functions. It is based on a well-known method developed by P. O. M. Olsson in J. Math. Phys. 5, 420 (1964) in order to derive the analytic continuations of the Appell $F_1$ double hypergeometric series from the linear transformations of the Gauss $_2F_1$ hypergeometric function. We provide a brief description of Olsson's method and demonstrate the commands of the package, along with examples. We also provide a companion package, called ROC2.wl and dedicated to the derivation of the regions of convergence of double hypergeometric series. This package can be used independently of Olsson.wl.

相關內容

In Statistical Relational Artificial Intelligence, a branch of AI and machine learning which combines the logical and statistical schools of AI, one uses the concept {\em para\-metrized probabilistic graphical model (PPGM)} to model (conditional) dependencies between random variables and to make probabilistic inferences about events on a space of "possible worlds". The set of possible worlds with underlying domain $D$ (a set of objects) can be represented by the set $\mathbf{W}_D$ of all first-order structures (for a suitable signature) with domain $D$. Using a formal logic we can describe events on $\mathbf{W}_D$. By combining a logic and a PPGM we can also define a probability distribution $\mathbb{P}_D$ on $\mathbf{W}_D$ and use it to compute the probability of an event. We consider a logic, denoted $PLA$, with truth values in the unit interval, which uses aggregation functions, such as arithmetic mean, geometric mean, maximum and minimum instead of quantifiers. However we face the problem of computational efficiency and this problem is an obstacle to the wider use of methods from Statistical Relational AI in practical applications. We address this problem by proving that the described probability will, under certain assumptions on the PPGM and the sentence $\varphi$, converge as the size of $D$ tends to infinity. The convergence result is obtained by showing that every formula $\varphi(x_1, \ldots, x_k)$ which contains only "admissible" aggregation functions (e.g. arithmetic and geometric mean, max and min) is asymptotically equivalent to a formula $\psi(x_1, \ldots, x_k)$ without aggregation functions.

This paper presents a control framework on Lie groups by designing the control objective in its Lie algebra. Control on Lie groups is challenging due to its nonlinear nature and difficulties in system parameterization. Existing methods to design the control objective on a Lie group and then derive the gradient for controller design are non-trivial and can result in slow convergence in tracking control. We show that with a proper left-invariant metric, setting the gradient of the cost function as the tracking error in the Lie algebra leads to a quadratic Lyapunov function that enables globally exponential convergence. In the PD control case, we show that our controller can maintain an exponential convergence rate even when the initial error is approaching $\pi$ in SO(3). We also show the merit of this proposed framework in trajectory optimization. The proposed cost function enables the iterative Linear Quadratic Regulator (iLQR) to converge much faster than the Differential Dynamic Programming (DDP) with a well-adopted cost function when the initial trajectory is poorly initialized on SO(3).

We introduce a family of pairwise stochastic gradient estimators for gradients of expectations, which are related to the log-derivative trick, but involve pairwise interactions between samples. The simplest example of our new estimator, dubbed the fundamental trick estimator, is shown to arise from either a) introducing and approximating an integral representation based on the fundamental theorem of calculus, or b) applying the reparameterisation trick to an implicit parameterisation under infinitesimal perturbation of the parameters. From the former perspective we generalise to a reproducing kernel Hilbert space representation, giving rise to a locality parameter in the pairwise interactions mentioned above, yielding our representer trick estimator. The resulting estimators are unbiased and shown to offer an independent component of useful information in comparison with the log-derivative estimator. We provide a further novel theoretical analysis which further characterises the variance reduction afforded by the new techniques. Promising analytical and numerical examples confirm the theory and intuitions behind the new estimators.

In large-scale recommender systems, the user-item networks are generally scale-free or expand exponentially. The latent features (also known as embeddings) used to describe the user and item are determined by how well the embedding space fits the data distribution. Hyperbolic space offers a spacious room to learn embeddings with its negative curvature and metric properties, which can well fit data with tree-like structures. Recently, several hyperbolic approaches have been proposed to learn high-quality representations for the users and items. However, most of them concentrate on developing the hyperbolic similitude by designing appropriate projection operations, whereas many advantageous and exciting geometric properties of hyperbolic space have not been explicitly explored. For example, one of the most notable properties of hyperbolic space is that its capacity space increases exponentially with the radius, which indicates the area far away from the hyperbolic origin is much more embeddable. Regarding the geometric properties of hyperbolic space, we bring up a \textit{Hyperbolic Regularization powered Collaborative Filtering} (HRCF) and design a geometric-aware hyperbolic regularizer. Specifically, the proposal boosts optimization procedure via the root alignment and origin-aware penalty, which is simple yet impressively effective. Through theoretical analysis, we further show that our proposal is able to tackle the over-smoothing problem caused by hyperbolic aggregation and also brings the models a better discriminative ability. We conduct extensive empirical analysis, comparing our proposal against a large set of baselines on several public benchmarks. The empirical results show that our approach achieves highly competitive performance and surpasses both the leading Euclidean and hyperbolic baselines by considerable margins. Further analysis verifies ...

In this article we implement a method for the computation of a nonlinear elliptic problem with nonstandard growth driven by the $p(x)-$Laplacian operator. Our implementation is based in the {\em decomposition--coordination} method that allows us, via an iterative process, to solve in each step a linear differential equation and a nonlinear algebraic equation. Our code is implemented in {\sc MatLab} in 2 dimensions and turns out to be extremely efficient from the computational point of view.

In this paper, the Lie symmetry analysis is proposed for a space-time convection-diffusion fractional differential equations with the Riemann-Liouville derivative by (2+1) independent variables and one dependent variable. We find a reduction form of our governed fractional differential equation using the similarity solution of our Lie symmetry. One-dimensional optimal system of Lie symmetry algebras is found. We present a computational method via the spectral method based on Bernstein's operational matrices to solve the two-dimensional fractional heat equation with some initial conditions.

Recent decades, the emergence of numerous novel algorithms makes it a gimmick to propose an intelligent optimization system based on metaphor, and hinders researchers from exploring the essence of search behavior in algorithms. However, it is difficult to directly discuss the search behavior of an intelligent optimization algorithm, since there are so many kinds of intelligent schemes. To address this problem, an intelligent optimization system is regarded as a simulated physical optimization system in this paper. The dynamic search behavior of such a simplified physical optimization system are investigated with quantum theory. To achieve this goal, the Schroedinger equation is employed as the dynamics equation of the optimization algorithm, which is used to describe dynamic search behaviours in the evolution process with quantum theory. Moreover, to explore the basic behaviour of the optimization system, the optimization problem is assumed to be decomposed and approximated. Correspondingly, the basic search behaviour is derived, which constitutes the basic iterative process of a simple optimization system. The basic iterative process is compared with some classical bare-bones schemes to verify the similarity of search behavior under different metaphors. The search strategies of these bare bones algorithms are analyzed through experiments.

Sufficient dimension reduction (SDR) is a successful tool in regression models. It is a feasible method to solve and analyze the nonlinear nature of the regression problems. This paper introduces the \textbf{itdr} R package that provides several functions based on integral transformation methods to estimate the SDR subspaces in a comprehensive and user-friendly manner. In particular, the \textbf{itdr} package includes the Fourier method (FM) and the convolution method (CM) of estimating the SDR subspaces such as the central mean subspace (CMS) and the central subspace (CS). In addition, the \textbf{itdr} package facilitates the recovery of the CMS and the CS by using the iterative Hessian transformation (IHT) method and the Fourier transformation approach for inverse dimension reduction method (invFM), respectively. Moreover, the use of the package is illustrated by three datasets. \textcolor{black}{Furthermore, this is the first package that implements integral transformation methods to estimate SDR subspaces. Hence, the \textbf{itdr} package may provide a huge contribution to research in the SDR field.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

北京阿比特科技有限公司