亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $G=(V,E)$ be an undirected unweighted planar graph. Consider a vector storing the distances from an arbitrary vertex $v$ to all vertices $S = \{ s_1 , s_2 , \ldots , s_k \}$ of a single face in their cyclic order. The pattern of $v$ is obtained by taking the difference between every pair of consecutive values of this vector. In STOC'19, Li and Parter used a VC-dimension argument to show that in planar graphs, the number of distinct patterns, denoted $x$, is only $O(k^3)$. This resulted in a simple compression scheme requiring $\tilde O(\min \{ k^4+|T|, k\cdot |T|\})$ space to encode the distances between $S$ and a subset of terminal vertices $T \subseteq V$. This is known as the Okamura-Seymour metric compression problem. We give an alternative proof of the $x=O(k^3)$ bound that exploits planarity beyond the VC-dimension argument. Namely, our proof relies on cut-cycle duality, as well as on the fact that distances among vertices of $S$ are bounded by $k$. Our method implies the following: (1) An $\tilde{O}(x+k+|T|)$ space compression of the Okamura-Seymour metric, thus improving the compression of Li and Parter to $\tilde O(\min \{k^3+|T|,k \cdot |T| \})$. (2) An optimal $\tilde{O}(k+|T|)$ space compression of the Okamura-Seymour metric, in the case where the vertices of $T$ induce a connected component in $G$. (3) A tight bound of $x = \Theta(k^2)$ for the family of Halin graphs, whereas the VC-dimension argument is limited to showing $x=O(k^3)$.

相關內容

We study approaches for compressing the empirical measure in the context of finite dimensional reproducing kernel Hilbert spaces (RKHSs).In this context, the empirical measure is contained within a natural convex set and can be approximated using convex optimization methods. Such an approximation gives under certain conditions rise to a coreset of data points. A key quantity that controls how large such a coreset has to be is the size of the largest ball around the empirical measure that is contained within the empirical convex set. The bulk of our work is concerned with deriving high probability lower bounds on the size of such a ball under various conditions. We complement this derivation of the lower bound by developing techniques that allow us to apply the compression approach to concrete inference problems such as kernel ridge regression. We conclude with a construction of an infinite dimensional RKHS for which the compression is poor, highlighting some of the difficulties one faces when trying to move to infinite dimensional RKHSs.

Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.

We investigate the feature compression of high-dimensional ridge regression using the optimal subsampling technique. Specifically, based on the basic framework of random sampling algorithm on feature for ridge regression and the A-optimal design criterion, we first obtain a set of optimal subsampling probabilities. Considering that the obtained probabilities are uneconomical, we then propose the nearly optimal ones. With these probabilities, a two step iterative algorithm is established which has lower computational cost and higher accuracy. We provide theoretical analysis and numerical experiments to support the proposed methods. Numerical results demonstrate the decent performance of our methods.

Given two strings $T$ and $S$ and a set of strings $P$, for each string $p \in P$, consider the unique substrings of $T$ that have $p$ as their prefix and $S$ as their suffix. Two problems then come to mind; the first problem being the counting of such substrings, and the second problem being the problem of listing all such substrings. In this paper, we describe linear-time, linear-space suffix tree-based algorithms for both problems. More specifically, we describe an $O(|T| + |P|)$ time algorithm for the counting problem, and an $O(|T| + |P| + \#(ans))$ time algorithm for the listing problem, where $\#(ans)$ refers to the number of strings being listed in total, and $|P|$ refers to the total length of the strings in $P$. We also consider the reversed version of the problems, where one prefix condition string and multiple suffix condition strings are given instead, and similarly describe linear-time, linear-space algorithms to solve them.

This paper introduces a novel approach to compute the numerical fluxes at the cell boundaries for a cell-centered conservative numerical scheme. Explicit gradients used in deriving the reconstruction polynomials are replaced by high-order gradients computed by compact finite differences, referred to as implicit gradients in this paper. The new approach has superior dispersion and dissipation properties in comparison to the compact reconstruction approach. A problem-independent shock capturing approach via Boundary Variation Diminishing (BVD) algorithm is used to suppress oscillations for the simulation of flows with shocks and material interfaces. Several numerical test cases are carried out to verify the proposed method's capability using the implicit gradient method for compressible flows.

Let $X^{(n)}$ be an observation sampled from a distribution $P_{\theta}^{(n)}$ with an unknown parameter $\theta,$ $\theta$ being a vector in a Banach space $E$ (most often, a high-dimensional space of dimension $d$). We study the problem of estimation of $f(\theta)$ for a functional $f:E\mapsto {\mathbb R}$ of some smoothness $s>0$ based on an observation $X^{(n)}\sim P_{\theta}^{(n)}.$ Assuming that there exists an estimator $\hat \theta_n=\hat \theta_n(X^{(n)})$ of parameter $\theta$ such that $\sqrt{n}(\hat \theta_n-\theta)$ is sufficiently close in distribution to a mean zero Gaussian random vector in $E,$ we construct a functional $g:E\mapsto {\mathbb R}$ such that $g(\hat \theta_n)$ is an asymptotically normal estimator of $f(\theta)$ with $\sqrt{n}$ rate provided that $s>\frac{1}{1-\alpha}$ and $d\leq n^{\alpha}$ for some $\alpha\in (0,1).$ We also derive general upper bounds on Orlicz norm error rates for estimator $g(\hat \theta)$ depending on smoothness $s,$ dimension $d,$ sample size $n$ and the accuracy of normal approximation of $\sqrt{n}(\hat \theta_n-\theta).$ In particular, this approach yields asymptotically efficient estimators in some high-dimensional exponential models.

We consider smooth optimization problems with a Hermitian positive semi-definite fixed-rank constraint, where a quotient geometry with three Riemannian metrics $g^i(\cdot, \cdot)$ $(i=1,2,3)$ is used to represent this constraint. By taking the nonlinear conjugate gradient method (CG) as an example, we show that CG on the quotient geometry with metric $g^1$ is equivalent to CG on the factor-based optimization framework, which is often called the Burer--Monteiro approach. We also show that CG on the quotient geometry with metric $g^3$ is equivalent to CG on the commonly-used embedded geometry. We call two CG methods equivalent if they produce an identical sequence of iterates $\{X_k\}$. In addition, we show that if the limit point of the sequence $\{X_k\}$ generated by an algorithm has lower rank, that is $X_k\in \mathbb C^{n\times n}, k = 1, 2, \ldots$ has rank $p$ and the limit point $X_*$ has rank $r < p$, then the condition number of the Riemannian Hessian with metric $g^1$ can be unbounded, but those of the other two metrics stay bounded. Numerical experiments show that the Burer--Monteiro CG method has slower local convergence rate if the limit point has a reduced rank, compared to CG on the quotient geometry under the other two metrics. This slower convergence rate can thus be attributed to the large condition number of the Hessian near a minimizer.

Music Structure Analysis (MSA) consists in segmenting a music piece in several distinct sections. We approach MSA within a compression framework, under the hypothesis that the structure is more easily revealed by a simplified representation of the original content of the song. More specifically, under the hypothesis that MSA is correlated with similarities occurring at the bar scale, this article introduces the use of linear and non-linear compression schemes on barwise audio signals. Compressed representations capture the most salient components of the different bars in the song and are then used to infer the song structure using a dynamic programming algorithm. This work explores both low-rank approximation models such as Principal Component Analysis or Nonnegative Matrix Factorization and "piece-specific" Auto-Encoding Neural Networks, with the objective to learn latent representations specific to a given song. Such approaches do not rely on supervision nor annotations, which are well-known to be tedious to collect and possibly ambiguous in MSA description. In our experiments, several unsupervised compression schemes achieve a level of performance comparable to that of state-of-the-art supervised methods (for 3s tolerance) on the RWC-Pop dataset, showcasing the importance of the barwise compression processing for MSA.

Grammar-based compression is a loss-less data compression scheme that represents a given string $w$ by a context-free grammar that generates only $w$. While computing the smallest grammar which generates a given string $w$ is NP-hard in general, a number of polynomial-time grammar-based compressors which work well in practice have been proposed. RePair, proposed by Larsson and Moffat in 1999, is a grammar-based compressor which recursively replaces all possible occurrences of a most frequently occurring bigrams in the string. Since there can be multiple choices of the most frequent bigrams to replace, different implementations of RePair can result in different grammars. In this paper, we show that the smallest grammars generating the Fibonacci words $F_k$ can be completely characterized by RePair, where $F_k$ denotes the $k$-th Fibonacci word. Namely, all grammars for $F_k$ generated by any implementation of RePair are the smallest grammars for $F_k$, and no other grammars can be the smallest for $F_k$. To the best of our knowledge, Fibonacci words are the first non-trivial infinite family of strings for which RePair is optimal.

Let $W$ be a finite set which simultaneously serves as the universe of any poset $(W,\preceq)$ and as the vertex set of any graph $G$. Our algorithm, abbreviated A-I-I, enumerates (in a compressed format using don't-care symbols) all $G$-independent order ideals of $(W,\preceq)$. For certain instances the high-end Mathematica implementation of A-I-I compares favorably to the hardwired Mathematica commands {\tt BooleanConvert} and {\tt SatisfiabilityCount}. The A-I-I can be parallelized and adapts to a polynomial total time algorithm that enumerates the modelset of any Boolean 2-CNF.

北京阿比特科技有限公司