As LLMs make their way into many aspects of our lives, one place that warrants increased scrutiny with LLM usage is scientific research. Using LLMs for generating or analyzing data for research purposes is gaining popularity. But when such application is marred with ad-hoc decisions and engineering solutions, we need to be concerned about how it may affect that research, its findings, or any future works based on that research. We need a more scientific approach to using LLMs in our research. While there are several active efforts to support more systematic construction of prompts, they are often focused more on achieving desirable outcomes rather than producing replicable and generalizable knowledge with sufficient transparency, objectivity, or rigor. This article presents a new methodology inspired by codebook construction through qualitative methods to address that. Using humans in the loop and a multi-phase verification processes, this methodology lays a foundation for more systematic, objective, and trustworthy way of applying LLMs for analyzing data. Specifically, we show how a set of researchers can work through a rigorous process of labeling, deliberating, and documenting to remove subjectivity and bring transparency and replicability to prompt generation process. A set of experiments are presented to show how this methodology can be put in practice.
The recent advances of AI technology, particularly in AI-Generated Content (AIGC), have enabled everyone to easily generate beautiful paintings with simple text description. With the stunning quality of AI paintings, it is widely questioned whether there still exists difference between human and AI paintings and whether human artists will be replaced by AI. To answer these questions, we develop a computational framework combining neural latent space and aesthetics features with visual analytics to investigate the difference between human and AI paintings. First, with categorical comparison of human and AI painting collections, we find that AI artworks show distributional difference from human artworks in both latent space and some aesthetic features like strokes and sharpness, while in other aesthetic features like color and composition there is less difference. Second, with individual artist analysis of Picasso, we show human artists' strength in evolving new styles compared to AI. Our findings provide concrete evidence for the existing discrepancies between human and AI paintings and further suggest improvements of AI art with more consideration of aesthetics and human artists' involvement.
There is a well-known problem in Null Hypothesis Significance Testing: many statistically significant results fail to replicate in subsequent experiments. We show that this problem arises because standard `point-form null' significance tests consider only within-experiment but ignore between-experiment variation, and so systematically underestimate the degree of random variation in results. We give an extension to standard significance testing that addresses this problem by analysing both within- and between-experiment variation. This `distributional null' approach does not underestimate experimental variability and so is not overconfident in identifying significance; because this approach addresses between-experiment variation, it gives mathematically coherent estimates for the probability of replication of significant results. Using a large-scale replication dataset (the first `Many Labs' project), we show that many experimental results that appear statistically significant in standard tests are in fact consistent with random variation when both within- and between-experiment variation are taken into account in this approach. Further, grouping experiments in this dataset into `predictor-target' pairs we show that the predicted replication probabilities for target experiments produced in this approach (given predictor experiment results and the sample sizes of the two experiments) are strongly correlated with observed replication rates. Distributional null hypothesis testing thus gives researchers a statistical tool for identifying statistically significant and reliably replicable results.
Beyond the well-known giants like Uber Eats and DoorDash, there are hundreds of independent food delivery platforms in the United States. However, little is known about the sociotechnical landscape of these ``indie'' platforms. In this paper, we analyzed these platforms to understand why they were created, how they operate, and what technologies they use. We collected data on 495 indie platforms and detailed survey responses from 29 platforms. We found that personalized, timely service is a central value of indie platforms, as is a sense of responsibility to the local community they serve. Indie platforms are motivated to provide fair rates for restaurants and couriers. These alternative business practices differentiate them from mainstream platforms. Though indie platforms have plans to expand, a lack of customizability in off-the-shelf software prevents independent platforms from personalizing services for their local communities. We show that these platforms are a widespread and longstanding fixture of the food delivery market. We illustrate the diversity of motivations and values to explain why a one-size-fits-all support is insufficient, and we discuss the siloing of technology that inhibits platforms' growth. Through these insights, we aim to promote future HCI research into the potential development of public-interest technologies for local food delivery.
Large Language Models (LLMs) have shown powerful performance and development prospects and are widely deployed in the real world. However, LLMs can capture social biases from unprocessed training data and propagate the biases to downstream tasks. Unfair LLM systems have undesirable social impacts and potential harms. In this paper, we provide a comprehensive review of related research on fairness in LLMs. Considering the influence of parameter magnitude and training paradigm on research strategy, we divide existing fairness research into oriented to medium-sized LLMs under pre-training and fine-tuning paradigms and oriented to large-sized LLMs under prompting paradigms. First, for medium-sized LLMs, we introduce evaluation metrics and debiasing methods from the perspectives of intrinsic bias and extrinsic bias, respectively. Then, for large-sized LLMs, we introduce recent fairness research, including fairness evaluation, reasons for bias, and debiasing methods. Finally, we discuss and provide insight on the challenges and future directions for the development of fairness in LLMs.
A successful negotiation demands a deep comprehension of the conversation context, Theory-of-Mind (ToM) skills to infer the partner's motives, as well as strategic reasoning and effective communication, making it challenging for automated systems. Given the remarkable performance of LLMs across a variety of NLP tasks, in this work, we aim to understand how LLMs can advance different aspects of negotiation research, ranging from designing dialogue systems to providing pedagogical feedback and scaling up data collection practices. To this end, we devise a methodology to analyze the multifaceted capabilities of LLMs across diverse dialogue scenarios covering all the time stages of a typical negotiation interaction. Our analysis adds to the increasing evidence for the superiority of GPT-4 across various tasks while also providing insights into specific tasks that remain difficult for LLMs. For instance, the models correlate poorly with human players when making subjective assessments about the negotiation dialogues and often struggle to generate responses that are contextually appropriate as well as strategically advantageous.
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
Identifying safe areas is a key point to guarantee trust for systems that are based on Deep Neural Networks (DNNs). To this end, we introduce the AllDNN-Verification problem: given a safety property and a DNN, enumerate the set of all the regions of the property input domain which are safe, i.e., where the property does hold. Due to the #P-hardness of the problem, we propose an efficient approximation method called epsilon-ProVe. Our approach exploits a controllable underestimation of the output reachable sets obtained via statistical prediction of tolerance limits, and can provide a tight (with provable probabilistic guarantees) lower estimate of the safe areas. Our empirical evaluation on different standard benchmarks shows the scalability and effectiveness of our method, offering valuable insights for this new type of verification of DNNs.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.