Neural Machine Translation (NMT) has become a significant technology in natural language processing through extensive research and development. However, the deficiency of high-quality bilingual language pair data still poses a major challenge to improving NMT performance. Recent studies are exploring the use of contextual information from pre-trained language model (PLM) to address this problem. Yet, the issue of incompatibility between PLM and NMT model remains unresolved. This study proposes a PLM-integrated NMT (PiNMT) model to overcome the identified problems. The PiNMT model consists of three critical components, PLM Multi Layer Converter, Embedding Fusion, and Cosine Alignment, each playing a vital role in providing effective PLM information to NMT. Furthermore, two training strategies, Separate Learning Rates and Dual Step Training, are also introduced in this paper. By implementing the proposed PiNMT model and training strategy, we achieved state-of-the-art performance on the IWSLT'14 En$\leftrightarrow$De dataset. This study's outcomes are noteworthy as they demonstrate a novel approach for efficiently integrating PLM with NMT to overcome incompatibility and enhance performance.
This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.
The emergence of LLM (Large Language Model) integrated virtual assistants has brought about a rapid transformation in communication dynamics. During virtual assistant development, some developers prefer to leverage the system message, also known as an initial prompt or custom prompt, for preconditioning purposes. However, it is important to recognize that an excessive reliance on this functionality raises the risk of manipulation by malicious actors who can exploit it with carefully crafted prompts. Such malicious manipulation poses a significant threat, potentially compromising the accuracy and reliability of the virtual assistant's responses. Consequently, safeguarding the virtual assistants with detection and defense mechanisms becomes of paramount importance to ensure their safety and integrity. In this study, we explored three detection and defense mechanisms aimed at countering attacks that target the system message. These mechanisms include inserting a reference key, utilizing an LLM evaluator, and implementing a Self-Reminder. To showcase the efficacy of these mechanisms, they were tested against prominent attack techniques. Our findings demonstrate that the investigated mechanisms are capable of accurately identifying and counteracting the attacks. The effectiveness of these mechanisms underscores their potential in safeguarding the integrity and reliability of virtual assistants, reinforcing the importance of their implementation in real-world scenarios. By prioritizing the security of virtual assistants, organizations can maintain user trust, preserve the integrity of the application, and uphold the high standards expected in this era of transformative technologies.
Integrated sensing and communication (ISAC) is widely recognized as a pivotal enabling technique for the advancement of future wireless networks. This paper aims to efficiently exploit the inherent sparsity of echo signals for the multi-input-multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) based ISAC system. A novel joint receive echo processing and transmit beamforming design is presented to achieve this goal. Specifically, we first propose a compressive sensing (CS)-assisted estimation approach to facilitate ISAC receive echo processing, which can not only enable accurate recovery of target information, but also allow substantial reduction in the number of sensing subcarriers to be sampled and processed. Then, based on the proposed CS-assisted processing method, the associated transmit beamforming design is formulated with the objective of maximizing the sum-rate of multiuser communications while satisfying the transmit power budget and ensuring the received signal-to-noise ratio (SNR) for the designated sensing subcarriers. In order to address the formulated non-convex problem involving high-dimensional variables, an effective iterative algorithm employing majorization minimization (MM), fractional programming (FP), and the nonlinear equality alternative direction method of multipliers (neADMM) with closed-form solutions has been developed. Finally, extensive numerical simulations are conducted to verify the effectiveness of the proposed algorithm and the superior performance of the introduced sparsity exploitation strategy.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.