亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sign language has been extensively studied as a means of facilitating effective communication between hearing individuals and the deaf community. With the continuous advancements in virtual reality (VR) and gamification technologies, an increasing number of studies have begun to explore the application of these emerging technologies in sign language learning. This paper describes a user study that compares the impact of 2D and 3D games on the user experience in ASL learning. Empirical evidence gathered through questionnaires supports the positive impact of 3D game environments on user engagement and overall experience, particularly in relation to attractiveness, usability, and efficiency. Moreover, initial findings demonstrate a similar behaviour of 2D and 3D games in terms of enhancing user experience. Finally, the study identifies areas where improvements can be made to enhance the dependability and clarity of 3D game environments. These findings contribute to the understanding of how game-based approaches, and specifically the utilisation of 3D environments, can positively influence the learning experience of ASL.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

Semantic communication (SC) is recognized as a promising approach for enabling reliable communication with minimal data transfer while maintaining seamless connectivity for a group of wireless users. Unlocking the advantages of SC for multi-user cases requires revisiting how communication and computing resources are allocated. This reassessment should consider the reasoning abilities of end-users, enabling receiving nodes to fill in missing information or anticipate future events more effectively. Yet, state-of-the-art SC systems primarily focus on resource allocation through compression based on semantic relevance, while overlooking the underlying data generation mechanisms and the tradeoff between communications and computing. Thus, they cannot help prevent a disruption in connectivity. In contrast, in this paper, a novel framework for computing and communication resource allocation is proposed that seeks to demonstrate how SC systems with reasoning capabilities at the end nodes can improve reliability in an end-to-end multi-user wireless system with intermittent communication links. Towards this end, a novel reasoning-aware SC system is proposed for enabling users to utilize their local computing resources to reason the representations when the communication links are unavailable. To optimize communication and computing resource allocation in this system, a noncooperative game is formulated among multiple users whose objective is to maximize the effective semantic information (computed as a product of reliability and semantic information) while controlling the number of semantically relevant links that are disrupted. Simulation results show that the proposed reasoning-aware SC system results in at least a $16.6\%$ enhancement in throughput and a significant improvement in reliability compared to classical communications systems that do not incorporate reasoning.

The performance of large language models (LLMs) is acutely sensitive to the phrasing of prompts, which raises significant concerns about their reliability in real-world scenarios. Existing studies often divide prompts into task-level instructions and case-level inputs and primarily focus on evaluating and improving robustness against variations in tasks-level instructions. However, this setup fails to fully address the diversity of real-world user queries and assumes the existence of task-specific datasets. To address these limitations, we introduce RobustAlpacaEval, a new benchmark that consists of semantically equivalent case-level queries and emphasizes the importance of using the worst prompt performance to gauge the lower bound of model performance. Extensive experiments on RobustAlpacaEval with ChatGPT and six open-source LLMs from the Llama, Mistral, and Gemma families uncover substantial variability in model performance; for instance, a difference of 45.48% between the worst and best performance for the Llama-2-70B-chat model, with its worst performance dipping as low as 9.38%. We further illustrate the difficulty in identifying the worst prompt from both model-agnostic and model-dependent perspectives, emphasizing the absence of a shortcut to characterize the worst prompt. We also attempt to enhance the worst prompt performance using existing prompt engineering and prompt consistency methods, but find that their impact is limited. These findings underscore the need to create more resilient LLMs that can maintain high performance across diverse prompts. Data and code are available at //github.com/cbwbuaa/On-the-Worst-Prompt- Performance-of-LLMs.

Improving the performance of large language models (LLMs) in complex question-answering (QA) scenarios has always been a research focal point. Recent studies have attempted to enhance LLMs' performance by combining step-wise planning with external retrieval. While effective for advanced models like GPT-3.5, smaller LLMs face challenges in decomposing complex questions, necessitating supervised fine-tuning. Previous work has relied on manual annotation and knowledge distillation from teacher LLMs, which are time-consuming and not accurate enough. In this paper, we introduce a novel framework for enhancing LLMs' planning capabilities by using planning data derived from knowledge graphs (KGs). LLMs fine-tuned with this data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval. Evaluations on multiple datasets, including our newly proposed benchmark, highlight the effectiveness of our framework and the benefits of KG-derived planning data.

Data similarity assumptions have traditionally been relied upon to understand the convergence behaviors of federated learning methods. Unfortunately, this approach often demands fine-tuning step sizes based on the level of data similarity. When data similarity is low, these small step sizes result in an unacceptably slow convergence speed for federated methods. In this paper, we present a novel and unified framework for analyzing the convergence of federated learning algorithms without the need for data similarity conditions. Our analysis centers on an inequality that captures the influence of step sizes on algorithmic convergence performance. By applying our theorems to well-known federated algorithms, we derive precise expressions for three widely used step size schedules: fixed, diminishing, and step-decay step sizes, which are independent of data similarity conditions. Finally, we conduct comprehensive evaluations of the performance of these federated learning algorithms, employing the proposed step size strategies to train deep neural network models on benchmark datasets under varying data similarity conditions. Our findings demonstrate significant improvements in convergence speed and overall performance, marking a substantial advancement in federated learning research.

Productive interactions between diverse users and language technologies require outputs from the latter to be culturally relevant and sensitive. Prior works have evaluated models' knowledge of cultural norms, values, and artifacts, without considering how this knowledge manifests in downstream applications. In this work, we focus on extrinsic evaluation of cultural competence in two text generation tasks, open-ended question answering and story generation. We quantitatively and qualitatively evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts. Although we find that model outputs do vary when varying nationalities and feature culturally relevant words, we also find weak correlations between text similarity of outputs for different countries and the cultural values of these countries. Finally, we discuss important considerations in designing comprehensive evaluation of cultural competence in user-facing tasks.

The recent successes and spread of large neural language models (LMs) call for a thorough understanding of their computational ability. Describing their computational abilities through LMs' \emph{representational capacity} is a lively area of research. However, investigation into the representational capacity of neural LMs has predominantly focused on their ability to \emph{recognize} formal languages. For example, recurrent neural networks (RNNs) with Heaviside activations are tightly linked to regular languages, i.e., languages defined by finite-state automata (FSAs). Such results, however, fall short of describing the capabilities of RNN \emph{language models} (LMs), which are definitionally \emph{distributions} over strings. We take a fresh look at the representational capacity of RNN LMs by connecting them to \emph{probabilistic} FSAs and demonstrate that RNN LMs with linearly bounded precision can express arbitrary regular LMs.

Accurately detecting dysfluencies in spoken language can help to improve the performance of automatic speech and language processing components and support the development of more inclusive speech and language technologies. Inspired by the recent trend towards the deployment of large language models (LLMs) as universal learners and processors of non-lexical inputs, such as audio and video, we approach the task of multi-label dysfluency detection as a language modeling problem. We present hypotheses candidates generated with an automatic speech recognition system and acoustic representations extracted from an audio encoder model to an LLM, and finetune the system to predict dysfluency labels on three datasets containing English and German stuttered speech. The experimental results show that our system effectively combines acoustic and lexical information and achieves competitive results on the multi-label stuttering detection task.

Edge computing has recently emerged as a promising paradigm to boost the performance of distributed learning by leveraging the distributed resources at edge nodes. Architecturally, the introduction of edge nodes adds an additional intermediate layer between the master and workers in the original distributed learning systems, potentially leading to more severe straggler effect. Recently, coding theory-based approaches have been proposed for stragglers mitigation in distributed learning, but the majority focus on the conventional workers-master architecture. In this paper, along a different line, we investigate the problem of mitigating the straggler effect in hierarchical distributed learning systems with an additional layer composed of edge nodes. Technically, we first derive the fundamental trade-off between the computational loads of workers and the stragglers tolerance. Then, we propose a hierarchical gradient coding framework, which provides better stragglers mitigation, to achieve the derived computational trade-off. To further improve the performance of our framework in heterogeneous scenarios, we formulate an optimization problem with the objective of minimizing the expected execution time for each iteration in the learning process. We develop an efficient algorithm to mathematically solve the problem by outputting the optimum strategy. Extensive simulation results demonstrate the superiority of our schemes compared with conventional solutions.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

北京阿比特科技有限公司