亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Human intelligence and human consciousness emerge gradually during the process of cognitive development. Understanding this development is an essential aspect of understanding the human mind and may facilitate the construction of artificial minds with similar properties. Importantly, human cognitive development relies on embodied interactions with the physical and social environment, which is perceived via complementary sensory modalities. These interactions allow the developing mind to probe the causal structure of the world. This is in stark contrast to common machine learning approaches, e.g., for large language models, which are merely passively ``digesting'' large amounts of training data, but are not in control of their sensory inputs. However, computational modeling of the kind of self-determined embodied interactions that lead to human intelligence and consciousness is a formidable challenge. Here we present MIMo, an open-source multi-modal infant model for studying early cognitive development through computer simulations. MIMo's body is modeled after an 18-month-old child with detailed five-fingered hands. MIMo perceives its surroundings via binocular vision, a vestibular system, proprioception, and touch perception through a full-body virtual skin, while two different actuation models allow control of his body. We describe the design and interfaces of MIMo and provide examples illustrating its use. All code is available at //github.com/trieschlab/MIMo .

相關內容

Multi-agent motion prediction is a crucial concern in autonomous driving, yet it remains a challenge owing to the ambiguous intentions of dynamic agents and their intricate interactions. Existing studies have attempted to capture interactions between road entities by using the definite data in history timesteps, as future information is not available and involves high uncertainty. However, without sufficient guidance for capturing future states of interacting agents, they frequently produce unrealistic trajectory overlaps. In this work, we propose Future Interaction modeling for Motion Prediction (FIMP), which captures potential future interactions in an end-to-end manner. FIMP adopts a future decoder that implicitly extracts the potential future information in an intermediate feature-level, and identifies the interacting entity pairs through future affinity learning and top-k filtering strategy. Experiments show that our future interaction modeling improves the performance remarkably, leading to superior performance on the Argoverse motion forecasting benchmark.

Recent progress in artificial intelligence (AI) has drawn attention to the technology's transformative potential, including what some see as its prospects for causing large-scale harm. We review two influential arguments purporting to show how AI could pose catastrophic risks. The first argument -- the Problem of Power-Seeking -- claims that, under certain assumptions, advanced AI systems are likely to engage in dangerous power-seeking behavior in pursuit of their goals. We review reasons for thinking that AI systems might seek power, that they might obtain it, that this could lead to catastrophe, and that we might build and deploy such systems anyway. The second argument claims that the development of human-level AI will unlock rapid further progress, culminating in AI systems far more capable than any human -- this is the Singularity Hypothesis. Power-seeking behavior on the part of such systems might be particularly dangerous. We discuss a variety of objections to both arguments and conclude by assessing the state of the debate.

Analyzing individual emotions during group conversation is crucial in developing intelligent agents capable of natural human-machine interaction. While reliable emotion recognition techniques depend on different modalities (text, audio, video), the inherent heterogeneity between these modalities and the dynamic cross-modal interactions influenced by an individual's unique behavioral patterns make the task of emotion recognition very challenging. This difficulty is compounded in group settings, where the emotion and its temporal evolution are not only influenced by the individual but also by external contexts like audience reaction and context of the ongoing conversation. To meet this challenge, we propose a Multimodal Attention Network that captures cross-modal interactions at various levels of spatial abstraction by jointly learning its interactive bunch of mode-specific Peripheral and Central networks. The proposed MAN injects cross-modal attention via its Peripheral key-value pairs within each layer of a mode-specific Central query network. The resulting cross-attended mode-specific descriptors are then combined using an Adaptive Fusion technique that enables the model to integrate the discriminative and complementary mode-specific data patterns within an instance-specific multimodal descriptor. Given a dialogue represented by a sequence of utterances, the proposed AMuSE model condenses both spatial and temporal features into two dense descriptors: speaker-level and utterance-level. This helps not only in delivering better classification performance (3-5% improvement in Weighted-F1 and 5-7% improvement in Accuracy) in large-scale public datasets but also helps the users in understanding the reasoning behind each emotion prediction made by the model via its Multimodal Explainability Visualization module.

AI-controlled robotic systems pose a risk to human workers and the environment. Classical risk assessment methods cannot adequately describe such black box systems. Therefore, new methods for a dynamic risk assessment of such AI-controlled systems are required. In this paper, we introduce the concept of a new dynamic risk assessment approach for AI-controlled robotic systems. The approach pipelines five blocks: (i) a Data Logging that logs the data of the given simulation, (ii) a Skill Detection that automatically detects the executed skills with a deep learning technique, (iii) a Behavioral Analysis that creates the behavioral profile of the robotic systems, (iv) a Risk Model Generation that automatically transforms the behavioral profile and risk data containing the failure probabilities of robotic hardware components into advanced hybrid risk models, and (v) Risk Model Solvers for the numerical evaluation of the generated hybrid risk models. Keywords: Dynamic Risk Assessment, Hybrid Risk Models, M2M Transformation, ROS, AI-Controlled Robotic Systems, Deep Learning, Reinforcement Learning

Due to the continuous change in operational data, AIOps solutions suffer from performance degradation over time. Although periodic retraining is the state-of-the-art technique to preserve the failure prediction AIOps models' performance over time, this technique requires a considerable amount of labeled data to retrain. In AIOps obtaining label data is expensive since it requires the availability of domain experts to intensively annotate it. In this paper, we present McUDI, a model-centric unsupervised degradation indicator that is capable of detecting the exact moment the AIOps model requires retraining as a result of changes in data. We further show how employing McUDI in the maintenance pipeline of AIOps solutions can reduce the number of samples that require annotations with 30k for job failure prediction and 260k for disk failure prediction while achieving similar performance with periodic retraining.

Narrative visualization effectively transforms data into engaging stories, making complex information accessible to a broad audience. Large models, essential for narrative visualization, inherently facilitate this process through their superior ability to handle natural language queries and answers, generate cohesive narratives, and enhance visual communication. Inspired by previous work in narrative visualization and recent advances in large models, we synthesized potential tasks and opportunities for large models at various stages of narrative visualization. In our study, we surveyed 79 papers to explore the role of large models in automating narrative visualization creation. We propose a comprehensive pipeline that leverages large models for crafting narrative visualization, categorizing the reviewed literature into four essential phases: Data, Narration, Visualization, and Presentation. Additionally, we identify ten specific tasks where large models are applied across these stages. This study maps out the landscape of challenges and opportunities in the LM4NV process, providing insightful directions for future research and valuable guidance for scholars in the field.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司