By interpreting planar polynomial curves as complex-valued functions of a real parameter, an inner product, norm, metric function, and the notion of orthogonality may be defined for such curves. This approach is applied to the complex pre-image polynomials that generate planar Pythagorean-hodograph (PH) curves, to facilitate the implementation of bounded modifications of them that preserve their PH nature. The problems of bounded modifications under the constraint of fixed curve end points and end tangent directions, and of increasing the arc length of a PH curve by a prescribed amount, are also addressed.
We propose a method to detect model misspecifications in nonlinear causal additive and potentially heteroscedastic noise models. We aim to identify predictor variables for which we can infer the causal effect even in cases of such misspecification. We develop a general framework based on knowledge of the multivariate observational data distribution. We then propose an algorithm for finite sample data, discuss its asymptotic properties, and illustrate its performance on simulated and real data.
We describe fast algorithms for approximating the connection coefficients between a family of orthogonal polynomials and another family with a polynomially or rationally modified measure. The connection coefficients are computed via infinite-dimensional banded matrix factorizations and may be used to compute the modified Jacobi matrices all in linear complexity with respect to the truncation degree. A family of orthogonal polynomials with modified classical weights is constructed that support banded differentiation matrices, enabling sparse spectral methods with modified classical orthogonal polynomials.
We build a transient multidimensional multiphysical model based on continuum theories, involving the coupled mechanical, thermal and electrochemical phenomena occurring simultaneously in the discharge or charge of lithium-ion batteries. The process delivers a system of coupled nonlinear partial differential equations. Besides initial and boundary conditions, we highlight the treatment of the electrode-electrolyte interface condition, which corresponds to a Butler-Volmer reaction kinetics equation. We present the derivation of the strong and weak forms of the model, as well as the discretization procedure in space and in time. The discretized model is computationally solved in two dimensions by means of a finite element method that employs $hp$ layered meshes, along with staggered second order semi-implicit time integration. The expected error estimate is of higher order than any other similar work, both in space and in time. A representative battery cell geometry, under distinct operating scenarios, is simulated. The numerical results show that the full model allows for important additional insights to be drawn than when caring only for the electrochemical coupling. Considering the multiphysics becomes more important as the applied current is increased, whether for discharge or for charge. Our full model provides battery design professionals with a valuable tool to optimize designs and advance the energy storage industry.
Fully explicit stabilized multirate (mRKC) methods are well-suited for the numerical solution of large multiscale systems of stiff ordinary differential equations thanks to their improved stability properties. To demonstrate their efficiency for the numerical solution of stiff, multiscale, nonlinear parabolic PDE's, we apply mRKC methods to the monodomain equation from cardiac electrophysiology. In doing so, we propose an improved version, specifically tailored to the monodomain model, which leads to the explicit exponential multirate stabilized (emRKC) method. Several numerical experiments are conducted to evaluate the efficiency of both mRKC and emRKC, while taking into account different finite element meshes (structured and unstructured) and realistic ionic models. The new emRKC method typically outperforms a standard implicit-explicit baseline method for cardiac electrophysiology. Code profiling and strong scalability results further demonstrate that emRKC is faster and inherently parallel without sacrificing accuracy.
Deep generative models aim to learn the underlying distribution of data and generate new ones. Despite the diversity of generative models and their high-quality generation performance in practice, most of them lack rigorous theoretical convergence proofs. In this work, we aim to establish some convergence results for OT-Flow, one of the deep generative models. First, by reformulating the framework of OT-Flow model, we establish the $\Gamma$-convergence of the formulation of OT-flow to the corresponding optimal transport (OT) problem as the regularization term parameter $\alpha$ goes to infinity. Second, since the loss function will be approximated by Monte Carlo method in training, we established the convergence between the discrete loss function and the continuous one when the sample number $N$ goes to infinity as well. Meanwhile, the approximation capability of the neural network provides an upper bound for the discrete loss function of the minimizers. The proofs in both aspects provide convincing assurances for OT-Flow.
This paper is concerned with structure-preserving numerical approximations for a class of nonlinear nonlocal Fokker-Planck equations, which admit a gradient flow structure and find application in diverse contexts. The solutions, representing density distributions, must be non-negative and satisfy a specific energy dissipation law. We design an arbitrary high-order discontinuous Galerkin (DG) method tailored for these model problems. Both semi-discrete and fully discrete schemes are shown to admit the energy dissipation law for non-negative numerical solutions. To ensure the preservation of positivity in cell averages at all time steps, we introduce a local flux correction applied to the DDG diffusive flux. Subsequently, a hybrid algorithm is presented, utilizing a positivity-preserving limiter, to generate positive and energy-dissipating solutions. Numerical examples are provided to showcase the high resolution of the numerical solutions and the verified properties of the DG schemes.
Random fields are ubiquitous mathematical structures in physics, with applications ranging from thermodynamics and statistical physics to quantum field theory and cosmology. Recent works on information geometry of Gaussian random fields proposed mathematical expressions for the components of the metric tensor of the underlying parametric space, allowing the computation of the curvature in each point of the manifold. In this study, our hypothesis is that time irreversibility in Gaussian random fields dynamics is a direct consequence of geometric properties (curvature) of their parametric space. In order to validate this hypothesis, we compute the components of the metric tensor and derive the twenty seven Christoffel symbols of the metric to define the Euler-Lagrange equations, a system of partial differential equations that are used to build geodesic curves in Riemannian manifolds. After that, by the application of the fourth-order Runge-Kutta method and Markov Chain Monte Carlo simulation, we numerically build geodesic curves starting from an arbitrary initial point in the manifold. The obtained results show that, when the system undergoes phase transitions, the geodesic curve obtained by time reversing the computational simulation diverges from the original curve, showing a strange effect that we called the geodesic dispersion phenomenon, which suggests that time irreversibility in random fields is related to the intrinsic geometry of their parametric space.
Entropy conditions play a crucial role in the extraction of a physically relevant solution for a system of conservation laws, thus motivating the construction of entropy stable schemes that satisfy a discrete analogue of such conditions. TeCNO schemes (Fjordholm et al. 2012) form a class of arbitrary high-order entropy stable finite difference solvers, which require specialized reconstruction algorithms satisfying the sign property at each cell interface. Recently, third-order WENO schemes called SP-WENO (Fjordholm and Ray, 2016) and SP-WENOc (Ray, 2018) have been designed to satisfy the sign property. However, these WENO algorithms can perform poorly near shocks, with the numerical solutions exhibiting large spurious oscillations. In the present work, we propose a variant of the SP-WENO, termed as Deep Sign-Preserving WENO (DSP-WENO), where a neural network is trained to learn the WENO weighting strategy. The sign property and third-order accuracy are strongly imposed in the algorithm, which constrains the WENO weight selection region to a convex polygon. Thereafter, a neural network is trained to select the WENO weights from this convex region with the goal of improving the shock-capturing capabilities without sacrificing the rate of convergence in smooth regions. The proposed synergistic approach retains the mathematical framework of the TeCNO scheme while integrating deep learning to remedy the computational issues of the WENO-based reconstruction. We present several numerical experiments to demonstrate the significant improvement with DSP-WENO over the existing variants of WENO satisfying the sign property.
For the Euler scheme of the stochastic linear evolution equations, discrete stochastic maximal $ L^p $-regularity estimate is established, and a sharp error estimate in the norm $ \|\cdot\|_{L^p((0,T)\times\Omega;L^q(\mathcal O))} $, $ p,q \in [2,\infty) $, is derived via a duality argument.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.