亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobile health (mHealth) applications have become increasingly valuable in preventive healthcare and in reducing the burden on healthcare organizations. The aim of this paper is to investigate the factors that influence user acceptance of mHealth apps and identify the underlying structure that shapes users' behavioral intention. An online study that employed factorial survey design with vignettes was conducted, and a total of 1,669 participants from eight countries across four continents were included in the study. Structural equation modeling was employed to quantitatively assess how various factors collectively contribute to users' willingness to use mHealth apps. The results indicate that users' digital literacy has the strongest impact on their willingness to use them, followed by their online habit of sharing personal information. Users' concerns about personal privacy only had a weak impact. Furthermore, users' demographic background, such as their country of residence, age, ethnicity, and education, has a significant moderating effect. Our findings have implications for app designers, healthcare practitioners, and policymakers. Efforts are needed to regulate data collection and sharing and promote digital literacy among the general population to facilitate the widespread adoption of mHealth apps.

相關內容

Modern privacy regulations provide a strict mandate for data processing entities to implement appropriate technical measures to demonstrate compliance. In practice, determining what measures are indeed "appropriate" is not trivial, particularly in light of vague guidelines provided by privacy regulations. To exacerbate the issue, challenges arise not only in the implementation of the technical measures themselves, but also in a variety of factors involving the roles, processes, decisions, and culture surrounding the pursuit of privacy compliance. In this paper, we present 33 challenges faced in the implementation of technical measures for privacy compliance, derived from a qualitative analysis of 16 interviews with privacy professionals. In addition, we evaluate the interview findings in a survey study, which gives way to a discussion of the identified challenges and their implications.

Context. Algorithmic racism is the term used to describe the behavior of technological solutions that constrains users based on their ethnicity. Lately, various data-driven software systems have been reported to discriminate against Black people, either for the use of biased data sets or due to the prejudice propagated by software professionals in their code. As a result, Black people are experiencing disadvantages in accessing technology-based services, such as housing, banking, and law enforcement. Goal. This study aims to explore algorithmic racism from the perspective of software professionals. Method. A survey questionnaire was applied to explore the understanding of software practitioners on algorithmic racism, and data analysis was conducted using descriptive statistics and coding techniques. Results. We obtained answers from a sample of 73 software professionals discussing their understanding and perspectives on algorithmic racism in software development. Our results demonstrate that the effects of algorithmic racism are well-known among practitioners. However, there is no consensus on how the problem can be effectively addressed in software engineering. In this paper, some solutions to the problem are proposed based on the professionals' narratives. Conclusion. Combining technical and social strategies, including training on structural racism for software professionals, is the most promising way to address the algorithmic racism problem and its effects on the software solutions delivered to our society.

We investigate a novel approach to resilient distributed optimization with quadratic costs in a multi-agent system prone to unexpected events that make some agents misbehave. In contrast to commonly adopted filtering strategies, we draw inspiration from phenomena modeled through the Friedkin-Johnsen dynamics and argue that adding competition to the mix can improve resilience in the presence of misbehaving agents. Our intuition is corroborated by analytical and numerical results showing that (i) there exists a nontrivial trade-off between full collaboration and full competition and (ii) our competition-based approach can outperform state-of-the-art algorithms based on Weighted Mean Subsequence Reduced. We also study impact of communication topology and connectivity on resilience, pointing out insights to robust network design.

Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT.

Sensitive information is intrinsically tied to interactions in healthcare, and its protection is of paramount importance for achieving high-quality patient outcomes. Research in healthcare privacy and security is predominantly focused on understanding the factors that increase the susceptibility of users to privacy and security breaches. To understand further, we systematically review 26 research papers in this domain to explore the existing user studies in healthcare privacy and security. Following the review, we conducted a card-sorting exercise, allowing us to identify 12 themes integral to this subject such as "Data Sharing," "Risk Awareness," and "Privacy." Further to the identification of these themes, we performed an in-depth analysis of the 26 research papers report on the insights into the discourse within the research community about healthcare privacy and security, particularly from the user perspective.

This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.

Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司