Generative design is an increasingly important tool in the industrial world. It allows the designers and engineers to easily explore vast ranges of design options, providing a cheaper and faster alternative to the trial and failure approaches. Thanks to the flexibility they offer, Deep Generative Models are gaining popularity amongst Generative Design technologies. However, developing and evaluating these models can be challenging. The field lacks accessible benchmarks, in order to evaluate and compare objectively different Deep Generative Models architectures. Moreover, vanilla Deep Generative Models appear to be unable to accurately generate multi-components industrial systems that are controlled by latent design constraints. To address these challenges, we propose an industry-inspired use case that incorporates actual industrial system characteristics. This use case can be quickly generated and used as a benchmark. We propose a Meta-VAE capable of producing multi-component industrial systems and showcase its application on the proposed use case.
Generative Adversarial Networks (GANs) have shown immense potential in fields such as text and image generation. Only very recently attempts to exploit GANs to statistical-mechanics models have been reported. Here we quantitatively test this approach by applying it to a prototypical stochastic process on a lattice. By suitably adding noise to the original data we succeed in bringing both the Generator and the Discriminator loss functions close to their ideal value. Importantly, the discreteness of the model is retained despite the noise. As typical for adversarial approaches, oscillations around the convergence limit persist also at large epochs. This undermines model selection and the quality of the generated trajectories. We demonstrate that a simple multi-model procedure where stochastic trajectories are advanced at each step upon randomly selecting a Generator leads to a remarkable increase in accuracy. This is illustrated by quantitative analysis of both the predicted equilibrium probability distribution and of the escape-time distribution. Based on the reported findings, we believe that GANs are a promising tool to tackle complex statistical dynamics by machine learning techniques
Image-grounded dialogue systems benefit greatly from integrating visual information, resulting in high-quality response generation. However, current models struggle to effectively utilize such information in zero-resource scenarios, mainly due to the disparity between image and text modalities. To overcome this challenge, we propose an innovative multimodal framework, called ZRIGF, which assimilates image-grounded information for dialogue generation in zero-resource situations. ZRIGF implements a two-stage learning strategy, comprising contrastive pre-training and generative pre-training. Contrastive pre-training includes a text-image matching module that maps images and texts into a unified encoded vector space, along with a text-assisted masked image modeling module that preserves pre-training visual features and fosters further multimodal feature alignment. Generative pre-training employs a multimodal fusion module and an information transfer module to produce insightful responses based on harmonized multimodal representations. Comprehensive experiments conducted on both text-based and image-grounded dialogue datasets demonstrate ZRIGF's efficacy in generating contextually pertinent and informative responses. Furthermore, we adopt a fully zero-resource scenario in the image-grounded dialogue dataset to demonstrate our framework's robust generalization capabilities in novel domains. The code is available at //github.com/zhangbo-nlp/ZRIGF.
Deep neural networks have achieved outstanding performance over various tasks, but they have a critical issue: over-confident predictions even for completely unknown samples. Many studies have been proposed to successfully filter out these unknown samples, but they only considered narrow and specific tasks, referred to as misclassification detection, open-set recognition, or out-of-distribution detection. In this work, we argue that these tasks should be treated as fundamentally an identical problem because an ideal model should possess detection capability for all those tasks. Therefore, we introduce the unknown detection task, an integration of previous individual tasks, for a rigorous examination of the detection capability of deep neural networks on a wide spectrum of unknown samples. To this end, unified benchmark datasets on different scales were constructed and the unknown detection capabilities of existing popular methods were subject to comparison. We found that Deep Ensemble consistently outperforms the other approaches in detecting unknowns; however, all methods are only successful for a specific type of unknown. The reproducible code and benchmark datasets are available at //github.com/daintlab/unknown-detection-benchmarks .
As a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes, indicating its potential to act as a universal interface between the cyber and the physical worlds. Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance. However, the inherent challenge of explaining AI components introduces uncertainty and unreliability to these AI-enabled robotics systems, necessitating a reliable development platform for system design and performance assessment. As a foundational step towards building reliable AI-enabled robotics systems, we propose a public industrial benchmark for robotics manipulation in this paper. It leverages NVIDIA Omniverse Isaac Sim as the simulation platform, encompassing eight representative manipulation tasks and multiple AI software controllers. An extensive evaluation is conducted to analyze the performance of AI controllers in solving robotics manipulation tasks, enabling a thorough understanding of their effectiveness. To further demonstrate the applicability of our benchmark, we develop a falsification framework that is compatible with physical simulators and OpenAI Gym environments. This framework bridges the gap between traditional testing methods and modern physics engine-based simulations. The effectiveness of different optimization methods in falsifying AI-enabled robotics manipulation with physical simulators is examined via a falsification test. Our work not only establishes a foundation for the design and development of AI-enabled robotics systems but also provides practical experience and guidance to practitioners in this field, promoting further research in this critical academic and industrial domain.
Neural ranking models (NRMs) have undergone significant development and have become integral components of information retrieval (IR) systems. Unfortunately, recent research has unveiled the vulnerability of NRMs to adversarial document manipulations, potentially exploited by malicious search engine optimization practitioners. While progress in adversarial attack strategies aids in identifying the potential weaknesses of NRMs before their deployment, the defensive measures against such attacks, like the detection of adversarial documents, remain inadequately explored. To mitigate this gap, this paper establishes a benchmark dataset to facilitate the investigation of adversarial ranking defense and introduces two types of detection tasks for adversarial documents. A comprehensive investigation of the performance of several detection baselines is conducted, which involve examining the spamicity, perplexity, and linguistic acceptability, and utilizing supervised classifiers. Experimental results demonstrate that a supervised classifier can effectively mitigate known attacks, but it performs poorly against unseen attacks. Furthermore, such classifier should avoid using query text to prevent learning the classification on relevance, as it might lead to the inadvertent discarding of relevant documents.
Dialogue safety remains a pervasive challenge in open-domain human-machine interaction. Existing approaches propose distinctive dialogue safety taxonomies and datasets for detecting explicitly harmful responses. However, these taxonomies may not be suitable for analyzing response safety in mental health support. In real-world interactions, a model response deemed acceptable in casual conversations might have a negligible positive impact on users seeking mental health support. To address these limitations, this paper aims to develop a theoretically and factually grounded taxonomy that prioritizes the positive impact on help-seekers. Additionally, we create a benchmark corpus with fine-grained labels for each dialogue session to facilitate further research. We analyze the dataset using popular language models, including BERT-base, RoBERTa-large, and ChatGPT, to detect and understand unsafe responses within the context of mental health support. Our study reveals that ChatGPT struggles to detect safety categories with detailed safety definitions in a zero- and few-shot paradigm, whereas the fine-tuned model proves to be more suitable. The developed dataset and findings serve as valuable benchmarks for advancing research on dialogue safety in mental health support, with significant implications for improving the design and deployment of conversation agents in real-world applications. We release our code and data here: //github.com/qiuhuachuan/DialogueSafety.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.