Instrumental variable (IV) regression relies on instruments to infer causal effects from observational data with unobserved confounding. We consider IV regression in time series models, such as vector auto-regressive (VAR) processes. Direct applications of i.i.d. techniques are generally inconsistent as they do not correctly adjust for dependencies in the past. In this paper, we outline the difficulties that arise due to time structure and propose methodology for constructing identifying equations that can be used for consistent parametric estimation of causal effects in time series data. One method uses extra nuisance covariates to obtain identifiability (an idea that can be of interest even in the i.i.d. case). We further propose a graph marginalization framework that allows us to apply nuisance IV and other IV methods in a principled way to time series. Our methods make use of a version of the global Markov property, which we prove holds for VAR(p) processes. For VAR(1) processes, we prove identifiability conditions that relate to Jordan forms and are different from the well-known rank conditions in the i.i.d. case (they do not require as many instruments as covariates, for example). We provide methods, prove their consistency, and show how the inferred causal effect can be used for distribution generalization. Simulation experiments corroborate our theoretical results. We provide ready-to-use Python code.
Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices. LLM unlearning aims at removing undesired data influences and associated model capabilities without compromising utility out of the scope of unlearning. While interest in studying LLM unlearning is growing,the impact of the optimizer choice for LLM unlearning remains under-explored. In this work, we shed light on the significance of optimizer selection in LLM unlearning for the first time, establishing a clear connection between {second-order optimization} and influence unlearning (a classical approach using influence functions to update the model for data influence removal). This insight propels us to develop a second-order unlearning framework, termed SOUL, built upon the second-order clipped stochastic optimization (Sophia)-based LLM training method. SOUL extends the static, one-shot model update using influence unlearning to a dynamic, iterative unlearning process. Our extensive experiments show that SOUL consistently outperforms conventional first-order methods across various unlearning tasks, models, and metrics, suggesting the promise of second-order optimization in providing a scalable and easily implementable solution for LLM unlearning.
Generative AI (GenAI) has witnessed remarkable progress in recent years and demonstrated impressive performance in various generation tasks in different domains such as computer vision and computational design. Many researchers have attempted to integrate GenAI into visualization framework, leveraging the superior generative capacity for different operations. Concurrently, recent major breakthroughs in GenAI like diffusion model and large language model have also drastically increase the potential of GenAI4VIS. From a technical perspective, this paper looks back on previous visualization studies leveraging GenAI and discusses the challenges and opportunities for future research. Specifically, we cover the applications of different types of GenAI methods including sequence, tabular, spatial and graph generation techniques for different tasks of visualization which we summarize into four major stages: data enhancement, visual mapping generation, stylization and interaction. For each specific visualization sub-task, we illustrate the typical data and concrete GenAI algorithms, aiming to provide in-depth understanding of the state-of-the-art GenAI4VIS techniques and their limitations. Furthermore, based on the survey, we discuss three major aspects of challenges and research opportunities including evaluation, dataset, and the gap between end-to-end GenAI and generative algorithms. By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.
Guessing random additive noise decoding (GRAND) has received widespread attention recently, and among its variants, ordered reliability bits GRAND (ORBGRAND) is particularly attractive due to its efficient utilization of soft information and its amenability to hardware implementation. It has been recently shown that ORBGRAND is almost capacity-achieving in additive white Gaussian noise channels under antipodal input. In this work, we first extend the analysis of ORBGRAND achievable rate to memoryless binary-input bit channels with general output conditional probability distributions. The analytical result also sheds insight into understanding the gap between the ORBGRAND achievable rate and the channel mutual information. As an application of the analysis, we study the ORBGRAND achievable rate of bit-interleaved coded modulation (BICM). Numerical results indicate that for BICM, the gap between the ORBGRAND achievable rate and the channel mutual information is typically small, and hence suggest the feasibility of ORBGRAND for channels with high-order coded modulation schemes.
Image-text matching remains a challenging task due to heterogeneous semantic diversity across modalities and insufficient distance separability within triplets. Different from previous approaches focusing on enhancing multi-modal representations or exploiting cross-modal correspondence for more accurate retrieval, in this paper we aim to leverage the knowledge transfer between peer branches in a boosting manner to seek a more powerful matching model. Specifically, we propose a brand-new Deep Boosting Learning (DBL) algorithm, where an anchor branch is first trained to provide insights into the data properties, with a target branch gaining more advanced knowledge to develop optimal features and distance metrics. Concretely, an anchor branch initially learns the absolute or relative distance between positive and negative pairs, providing a foundational understanding of the particular network and data distribution. Building upon this knowledge, a target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples. Extensive experiments validate that our DBL can achieve impressive and consistent improvements based on various recent state-of-the-art models in the image-text matching field, and outperform related popular cooperative strategies, e.g., Conventional Distillation, Mutual Learning, and Contrastive Learning. Beyond the above, we confirm that DBL can be seamlessly integrated into their training scenarios and achieve superior performance under the same computational costs, demonstrating the flexibility and broad applicability of our proposed method. Our code is publicly available at: //github.com/Paranioar/DBL.
Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.
Machine Learning (ML) systems are becoming instrumental in the public sector, with applications spanning areas like criminal justice, social welfare, financial fraud detection, and public health. While these systems offer great potential benefits to institutional decision-making processes, such as improved efficiency and reliability, they still face the challenge of aligning nuanced policy objectives with the precise formalization requirements necessitated by ML models. In this paper, we aim to bridge the gap between ML model requirements and public sector decision-making by presenting a comprehensive overview of key technical challenges where disjunctions between policy goals and ML models commonly arise. We concentrate on pivotal points of the ML pipeline that connect the model to its operational environment, discussing the significance of representative training data and highlighting the importance of a model setup that facilitates effective decision-making. Additionally, we link these challenges with emerging methodological advancements, encompassing causal ML, domain adaptation, uncertainty quantification, and multi-objective optimization, illustrating the path forward for harmonizing ML and public sector objectives.
The Internet service provider industry is currently experiencing intense competition as companies strive to provide top-notch services to their customers. Providers are introducing cutting-edge technologies to enhance service quality, understanding that their survival depends on the level of service they offer. However, evaluating service quality is a complex task. A crucial aspect of this evaluation lies in understanding user experience, which significantly impacts the success and reputation of a service or product. Ensuring a seamless and positive user experience is essential for attracting and retaining customers. To date, much effort has been devoted to developing tools for measuring Quality of Experience (QoE), which incorporate both subjective and objective criteria. These tools, available in closed and open-source formats, are accessible to organizations and contribute to improving user experience quality. This review article delves into recent research and initiatives aimed at creating frameworks for assessing user QoE. It also explores the integration of machine learning algorithms to enhance these tools for future advancements. Additionally, the article examines current challenges and envisions future directions in the development of these measurement tools.
Long methods that encapsulate multiple responsibilities within a single method are challenging to maintain. Choosing which statements to extract into new methods has been the target of many research tools. Despite steady improvements, these tools often fail to generate refactorings that align with developers' preferences and acceptance criteria. Given that Large Language Models (LLMs) have been trained on large code corpora, if we harness their familiarity with the way developers form functions, we could suggest refactorings that developers are likely to accept. In this paper, we advance the science and practice of refactoring by synergistically combining the insights of LLMs with the power of IDEs to perform Extract Method (EM). Our formative study on 1752 EM scenarios revealed that LLMs are very effective for giving expert suggestions, yet they are unreliable: up to 76.3% of the suggestions are hallucinations. We designed a novel approach that removes hallucinations from the candidates suggested by LLMs, then further enhances and ranks suggestions based on static analysis techniques from program slicing, and finally leverages the IDE to execute refactorings correctly. We implemented this approach in an IntelliJ IDEA plugin called EM-Assist. We empirically evaluated EM-Assist on a diverse corpus that replicates 1752 actual refactorings from open-source projects. We found that EM-Assist outperforms previous state of the art tools: EM-Assist suggests the developerperformed refactoring in 53.4% of cases, improving over the recall rate of 39.4% for previous best-in-class tools. Furthermore, we conducted firehouse surveys with 16 industrial developers and suggested refactorings on their recent commits. 81.3% of them agreed with the recommendations provided by EM-Assist.
The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark, along with the scoring code and detailed appendices, have been open-sourced (//github.com/CarlWangChina/MuChin/).
Recently, Segment Anything Model (SAM) shows exceptional performance in generating high-quality object masks and achieving zero-shot image segmentation. However, as a versatile vision model, SAM is primarily trained with large-scale natural light images. In underwater scenes, it exhibits substantial performance degradation due to the light scattering and absorption. Meanwhile, the simplicity of the SAM's decoder might lead to the loss of fine-grained object details. To address the above issues, we propose a novel feature learning framework named MAS-SAM for marine animal segmentation, which involves integrating effective adapters into the SAM's encoder and constructing a pyramidal decoder. More specifically, we first build a new SAM's encoder with effective adapters for underwater scenes. Then, we introduce a Hypermap Extraction Module (HEM) to generate multi-scale features for a comprehensive guidance. Finally, we propose a Progressive Prediction Decoder (PPD) to aggregate the multi-scale features and predict the final segmentation results. When grafting with the Fusion Attention Module (FAM), our method enables to extract richer marine information from global contextual cues to fine-grained local details. Extensive experiments on four public MAS datasets demonstrate that our MAS-SAM can obtain better results than other typical segmentation methods. The source code is available at //github.com/Drchip61/MAS-SAM.