Learning in MDPs with highly complex state representations is currently possible due to multiple advancements in reinforcement learning algorithm design. However, this incline in complexity, and furthermore the increase in the dimensions of the observation came at the cost of volatility that can be taken advantage of via adversarial attacks (i.e. moving along worst-case directions in the observation space). To solve this policy instability problem we propose a novel method to detect the presence of these non-robust directions via local quadratic approximation of the deep neural policy loss. Our method provides a theoretical basis for the fundamental cut-off between safe observations and adversarial observations. Furthermore, our technique is computationally efficient, and does not depend on the methods used to produce the worst-case directions. We conduct extensive experiments in the Arcade Learning Environment with several different adversarial attack techniques. Most significantly, we demonstrate the effectiveness of our approach even in the setting where non-robust directions are explicitly optimized to circumvent our proposed method.
Deep neural networks (DNNs) have been shown to be vulnerable to adversarial attacks -- subtle, perceptually indistinguishable perturbations of inputs that change the response of the model. In the context of vision, we hypothesize that an important contributor to the robustness of human visual perception is constant exposure to low-fidelity visual stimuli in our peripheral vision. To investigate this hypothesis, we develop \RBlur, an image transform that simulates the loss in fidelity of peripheral vision by blurring the image and reducing its color saturation based on the distance from a given fixation point. We show that compared to DNNs trained on the original images, DNNs trained on images transformed by \RBlur are substantially more robust to adversarial attacks, as well as other, non-adversarial, corruptions, achieving up to 25\% higher accuracy on perturbed data.
We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification.
We propose novel methods for change-point testing for nonparametric estimators of expected shortfall and related risk measures in weakly dependent time series. We can detect general multiple structural changes in the tails of marginal distributions of time series under general assumptions. Self-normalization allows us to avoid the issues of standard error estimation. The theoretical foundations for our methods are functional central limit theorems, which we develop under weak assumptions. An empirical study of S&P 500 and US Treasury bond returns illustrates the practical use of our methods in detecting and quantifying market instability via the tails of financial time series.
Dialogue safety remains a pervasive challenge in open-domain human-machine interaction. Existing approaches propose distinctive dialogue safety taxonomies and datasets for detecting explicitly harmful responses. However, these taxonomies may not be suitable for analyzing response safety in mental health support. In real-world interactions, a model response deemed acceptable in casual conversations might have a negligible positive impact on users seeking mental health support. To address these limitations, this paper aims to develop a theoretically and factually grounded taxonomy that prioritizes the positive impact on help-seekers. Additionally, we create a benchmark corpus with fine-grained labels for each dialogue session to facilitate further research. We analyze the dataset using popular language models, including BERT-base, RoBERTa-large, and ChatGPT, to detect and understand unsafe responses within the context of mental health support. Our study reveals that ChatGPT struggles to detect safety categories with detailed safety definitions in a zero- and few-shot paradigm, whereas the fine-tuned model proves to be more suitable. The developed dataset and findings serve as valuable benchmarks for advancing research on dialogue safety in mental health support, with significant implications for improving the design and deployment of conversation agents in real-world applications. We release our code and data here: //github.com/qiuhuachuan/DialogueSafety.
Operational constraint violations may occur when deep reinforcement learning (DRL) agents interact with real-world active distribution systems to learn their optimal policies during training. This letter presents a universal distributionally robust safety filter (DRSF) using which any DRL agent can reduce the constraint violations of distribution systems significantly during training while maintaining near-optimal solutions. The DRSF is formulated as a distributionally robust optimization problem with chance constraints of operational limits. This problem aims to compute near-optimal actions that are minimally modified from the optimal actions of DRL-based Volt/VAr control by leveraging the distribution system model, thereby providing constraint satisfaction guarantee with a probability level under the model uncertainty. The performance of the proposed DRSF is verified using the IEEE 33-bus and 123-bus systems.
Learning contrastive representations from pairwise comparisons has achieved remarkable success in various fields, such as natural language processing, computer vision, and information retrieval. Collaborative filtering algorithms based on pairwise learning also rooted in this paradigm. A significant concern is the absence of labels for negative instances in implicit feedback data, which often results in the random selected negative instances contains false negatives and inevitably, biased embeddings. To address this issue, we introduce a novel correction method for sampling bias that yields a modified loss for pairwise learning called debiased pairwise loss (DPL). The key idea underlying DPL is to correct the biased probability estimates that result from false negatives, thereby correcting the gradients to approximate those of fully supervised data. The implementation of DPL only requires a small modification of the codes. Experimental studies on five public datasets validate the effectiveness of proposed learning method.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.