亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a promising learning paradigm integrating computation and communication, federated learning (FL) proceeds the local training and the periodic sharing from distributed clients. Due to the non-i.i.d. data distribution on clients, FL model suffers from the gradient diversity, poor performance, bad convergence, etc. In this work, we aim to tackle this key issue by adopting importance sampling (IS) for local training. We propose importance sampling federated learning (ISFL), an explicit framework with theoretical guarantees. Firstly, we derive the convergence theorem of ISFL to involve the effects of local importance sampling. Then, we formulate the problem of selecting optimal IS weights and obtain the theoretical solutions. We also employ a water-filling method to calculate the IS weights and develop the ISFL algorithms. The experimental results on CIFAR-10 fit the proposed theorems well and verify that ISFL reaps better performance, sampling efficiency, as well as explainability on non-i.i.d. data. To the best of our knowledge, ISFL is the first non-i.i.d. FL solution from the local sampling aspect which exhibits theoretical compatibility with neural network models. Furthermore, as a local sampling approach, ISFL can be easily migrated into other emerging FL frameworks.

相關內容

Machine-learning models are prone to capturing the spurious correlations between non-causal attributes and classes, with counterfactual data augmentation being a promising direction for breaking these spurious associations. However, explicitly generating counterfactual data is challenging, with the training efficiency declining. Therefore, this study proposes an implicit counterfactual data augmentation (ICDA) method to remove spurious correlations and make stable predictions. Specifically, first, a novel sample-wise augmentation strategy is developed that generates semantically and counterfactually meaningful deep features with distinct augmentation strength for each sample. Second, we derive an easy-to-compute surrogate loss on the augmented feature set when the number of augmented samples becomes infinite. Third, two concrete schemes are proposed, including direct quantification and meta-learning, to derive the key parameters for the robust loss. In addition, ICDA is explained from a regularization aspect, with extensive experiments indicating that our method consistently improves the generalization performance of popular depth networks on multiple typical learning scenarios that require out-of-distribution generalization.

Federated learning (FL) demonstrates its advantages in integrating distributed infrastructure, communication, computing and learning in a privacy-preserving manner. However, the robustness and capabilities of existing FL methods are challenged by limited and dynamic data and conditions, complexities including heterogeneities and uncertainties, and analytical explainability. Bayesian federated learning (BFL) has emerged as a promising approach to address these issues. This survey presents a critical overview of BFL, including its basic concepts, its relations to Bayesian learning in the context of FL, and a taxonomy of BFL from both Bayesian and federated perspectives. We categorize and discuss client- and server-side and FL-based BFL methods and their pros and cons. The limitations of the existing BFL methods and the future directions of BFL research further address the intricate requirements of real-life FL applications.

We present an exponentially convergent numerical method to approximate the solution of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded operator coefficient and Caputo fractional derivative in time. The numerical method is based on the newly obtained solution formula that consolidates the mild solution representations of sub-parabolic, parabolic and sub-hyperbolic equations with sectorial operator coefficient $A$ and non-zero initial data. The involved integral operators are approximated using the sinc-quadrature formulas that are tailored to the spectral parameters of $A$, fractional order $\alpha$ and the smoothness of the first initial condition, as well as to the properties of the equation's right-hand side $f(t)$. The resulting method possesses exponential convergence for positive sectorial $A$, any finite $t$, including $t = 0$, and the whole range $\alpha \in (0,2)$. It is suitable for a practically important case, when no knowledge of $f(t)$ is available outside the considered interval $t \in [0, T]$. The algorithm of the method is capable of multi-level parallelism. We provide numerical examples that confirm the theoretical error estimates.

Federated edge learning (FEEL) has attracted much attention as a privacy-preserving paradigm to effectively incorporate the distributed data at the network edge for training deep learning models. Nevertheless, the limited coverage of a single edge server results in an insufficient number of participated client nodes, which may impair the learning performance. In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL), where multiple edge servers are employed to collectively coordinate a large number of client nodes. By exploiting the low-latency communication among edge servers for efficient model sharing, SD-FEEL can incorporate more training data, while enjoying much lower latency compared with conventional federated learning. We detail the training algorithm for SD-FEEL with three main steps, including local model update, intra-cluster, and inter-cluster model aggregations. The convergence of this algorithm is proved on non-independent and identically distributed (non-IID) data, which also helps to reveal the effects of key parameters on the training efficiency and provides practical design guidelines. Meanwhile, the heterogeneity of edge devices may cause the straggler effect and deteriorate the convergence speed of SD-FEEL. To resolve this issue, we propose an asynchronous training algorithm with a staleness-aware aggregation scheme for SD-FEEL, of which, the convergence performance is also analyzed. The simulation results demonstrate the effectiveness and efficiency of the proposed algorithms for SD-FEEL and corroborate our analysis.

We consider the problem of curriculum design for reinforcement learning (RL) agents in contextual multi-task settings. Existing techniques on automatic curriculum design typically require domain-specific hyperparameter tuning or have limited theoretical underpinnings. To tackle these limitations, we design our curriculum strategy, ProCuRL, inspired by the pedagogical concept of Zone of Proximal Development (ZPD). ProCuRL captures the intuition that learning progress is maximized when picking tasks that are neither too hard nor too easy for the learner. We mathematically derive ProCuRL by analyzing two simple learning settings. We also present a practical variant of ProCuRL that can be directly integrated with deep RL frameworks with minimal hyperparameter tuning. Experimental results on a variety of domains demonstrate the effectiveness of our curriculum strategy over state-of-the-art baselines in accelerating the training process of deep RL agents.

Federated learning (FL) has emerged as a promising privacy-preserving distributed machine learning framework recently. It aims at collaboratively learning a shared global model by performing distributed training locally on edge devices and aggregating local models into a global one without centralized raw data sharing in the cloud server. However, due to the large local data heterogeneities (Non-I.I.D. data) across edge devices, the FL may easily obtain a global model that can produce more shifted gradients on local datasets, thereby degrading the model performance or even suffering from the non-convergence during training. In this paper, we propose a novel FL training framework, dubbed Fed-FSNet, using a properly designed Fuzzy Synthesizing Network (FSNet) to mitigate the Non-I.I.D. FL at-the-source. Concretely, we maintain an edge-agnostic hidden model in the cloud server to estimate a less-accurate while direction-aware inversion of the global model. The hidden model can then fuzzily synthesize several mimic I.I.D. data samples (sample features) conditioned on only the global model, which can be shared by edge devices to facilitate the FL training towards faster and better convergence. Moreover, since the synthesizing process involves neither access to the parameters/updates of local models nor analyzing individual local model outputs, our framework can still ensure the privacy of FL. Experimental results on several FL benchmarks demonstrate that our method can significantly mitigate the Non-I.I.D. issue and obtain better performance against other representative methods.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

北京阿比特科技有限公司