亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) have achieved widespread success on a variety of in-context few-shot tasks, but this success is typically evaluated via correctness rather than consistency. We argue that self-consistency is an important criteria for valid multi-step reasoning in tasks where the solution is composed of the answers to multiple sub-steps. We propose two types of self-consistency that are particularly important for multi-step reasoning -- hypothetical consistency (a model's ability to predict what its output would be in a hypothetical other context) and compositional consistency (consistency of a model's final outputs when intermediate sub-steps are replaced with the model's outputs for those steps). We demonstrate that multiple variants of the GPT-3/-4 models exhibit poor consistency rates across both types of consistency on a variety of tasks.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · 機器人 · 語言模型化 · MoDELS ·
2023 年 9 月 8 日

Natural-language dialog is key for intuitive human-robot interaction. It can be used not only to express humans' intents, but also to communicate instructions for improvement if a robot does not understand a command correctly. Of great importance is to endow robots with the ability to learn from such interaction experience in an incremental way to allow them to improve their behaviors or avoid mistakes in the future. In this paper, we propose a system to achieve incremental learning of complex behavior from natural interaction, and demonstrate its implementation on a humanoid robot. Building on recent advances, we present a system that deploys Large Language Models (LLMs) for high-level orchestration of the robot's behavior, based on the idea of enabling the LLM to generate Python statements in an interactive console to invoke both robot perception and action. The interaction loop is closed by feeding back human instructions, environment observations, and execution results to the LLM, thus informing the generation of the next statement. Specifically, we introduce incremental prompt learning, which enables the system to interactively learn from its mistakes. For that purpose, the LLM can call another LLM responsible for code-level improvements of the current interaction based on human feedback. The improved interaction is then saved in the robot's memory, and thus retrieved on similar requests. We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-6 and evaluate our methods both quantitatively (in simulation) and qualitatively (in simulation and real-world) by demonstrating generalized incrementally-learned knowledge.

While Multimodal Large Language Models (MLLMs) are widely used for a variety of vision-language tasks, one observation is that they sometimes misinterpret visual inputs or fail to follow textual instructions even in straightforward cases, leading to irrelevant responses, mistakes, and ungrounded claims. This observation is analogous to a phenomenon in neuropsychology known as Agnosia, an inability to correctly process sensory modalities and recognize things (e.g., objects, colors, relations). In our study, we adapt this similar concept to define "agnosia in MLLMs", and our goal is to comprehensively evaluate and mitigate such agnosia in MLLMs. Inspired by the diagnosis and treatment process in neuropsychology, we propose a novel framework EMMA (Evaluation and Mitigation of Multimodal Agnosia). In EMMA, we develop an evaluation module that automatically creates fine-grained and diverse visual question answering examples to assess the extent of agnosia in MLLMs comprehensively. We also develop a mitigation module to reduce agnosia in MLLMs through multimodal instruction tuning on fine-grained conversations. To verify the effectiveness of our framework, we evaluate and analyze agnosia in seven state-of-the-art MLLMs using 9K test samples. The results reveal that most of them exhibit agnosia across various aspects and degrees. We further develop a fine-grained instruction set and tune MLLMs to mitigate agnosia, which led to notable improvement in accuracy.

Economic models may exhibit incompleteness depending on whether or not they admit certain policy-relevant features such as strategic interaction, self-selection, or state dependence. We develop a novel test of model incompleteness and analyze its asymptotic properties. A key observation is that one can identify the least-favorable parametric model that represents the most challenging scenario for detecting local alternatives without knowledge of the selection mechanism. We build a robust test of incompleteness on a score function constructed from such a model. The proposed procedure remains computationally tractable even with nuisance parameters because it suffices to estimate them only under the null hypothesis of model completeness. We illustrate the test by applying it to a market entry model and a triangular model with a set-valued control function.

Large language models, particularly those akin to the rapidly progressing GPT series, are gaining traction for their expansive influence. While there is keen interest in their applicability within medical domains such as psychology, tangible explorations on real-world data remain scant. Concurrently, users on social media platforms are increasingly vocalizing personal sentiments; under specific thematic umbrellas, these sentiments often manifest as negative emotions, sometimes escalating to suicidal inclinations. Timely discernment of such cognitive distortions and suicidal risks is crucial to effectively intervene and potentially avert dire circumstances. Our study ventured into this realm by experimenting on two pivotal tasks: suicidal risk and cognitive distortion identification on Chinese social media platforms. Using supervised learning as a baseline, we examined and contrasted the efficacy of large language models via three distinct strategies: zero-shot, few-shot, and fine-tuning. Our findings revealed a discernible performance gap between the large language models and traditional supervised learning approaches, primarily attributed to the models' inability to fully grasp subtle categories. Notably, while GPT-4 outperforms its counterparts in multiple scenarios, GPT-3.5 shows significant enhancement in suicide risk classification after fine-tuning. To our knowledge, this investigation stands as the maiden attempt at gauging large language models on Chinese social media tasks. This study underscores the forward-looking and transformative implications of using large language models in the field of psychology. It lays the groundwork for future applications in psychological research and practice.

Large language models (LLMs), such as ChatGPT and GPT-4, are versatile and can solve different tasks due to their emergent ability and generalizability. However, LLMs sometimes lack domain-specific knowledge to perform tasks, which would also cause hallucination during inference. In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases, aiming to mitigate the problem of lacking domain-specific knowledge. However, incorporating additional modules: 1) would need retraining additional modules when encountering novel domains; 2) would become a bottleneck since LLMs' strong abilities are not fully utilized for retrieval. In this paper, we propose a paradigm, termed Knowledge Solver (KSL), to teach LLMs to search for essential knowledge from external knowledge bases by harnessing their own strong generalizability. Specifically, we design a simple yet effective prompt to transform retrieval into a multi-hop decision sequence, which empowers LLMs with searching knowledge ability in zero-shot manner. Additionally, KSL is able to provide complete retrieval paths and therefore increase explainability of LLMs' reasoning processes. We conduct experiments on three datasets: CommonsenseQA, OpenbookQA, and MedQA-USMLE, and found that our approach improves LLM baseline performance by a relatively large margin.

The aim of latent variable disentanglement is to infer the multiple informative latent representations that lie behind a data generation process and is a key factor in controllable data generation. In this paper, we propose a deep neural network-based self-supervised learning method to infer the disentangled rhythmic and harmonic representations behind music audio generation. We train a variational autoencoder that generates an audio mel-spectrogram from two latent features representing the rhythmic and harmonic content. In the training phase, the variational autoencoder is trained to reconstruct the input mel-spectrogram given its pitch-shifted version. At each forward computation in the training phase, a vector rotation operation is applied to one of the latent features, assuming that the dimensions of the feature vectors are related to pitch intervals. Therefore, in the trained variational autoencoder, the rotated latent feature represents the pitch-related information of the mel-spectrogram, and the unrotated latent feature represents the pitch-invariant information, i.e., the rhythmic content. The proposed method was evaluated using a predictor-based disentanglement metric on the learned features. Furthermore, we demonstrate its application to the automatic generation of music remixes.

Key to tasks that require reasoning about natural language in visual contexts is grounding words and phrases to image regions. However, observing this grounding in contemporary models is complex, even if it is generally expected to take place if the task is addressed in a way that is conductive to generalization. We propose a framework to jointly study task performance and phrase grounding, and propose three benchmarks to study the relation between the two. Our results show that contemporary models demonstrate inconsistency between their ability to ground phrases and solve tasks. We show how this can be addressed through brute-force training on ground phrasing annotations, and analyze the dynamics it creates. Code and at available at //github.com/lil-lab/phrase_grounding.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

北京阿比特科技有限公司