亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bias auditing of language models (LMs) has received considerable attention as LMs are becoming widespread. As such, several benchmarks for bias auditing have been proposed. At the same time, the rapid evolution of LMs can make these benchmarks irrelevant in no time. Bias auditing is further complicated by LM brittleness: when a presumably biased outcome is observed, is it due to model bias or model brittleness? We propose enlisting the models themselves to help construct bias auditing datasets that remain challenging, and introduce bias measures that distinguish between different types of model errors. First, we extend an existing bias benchmark for NLI (BBNLI) using a combination of LM-generated lexical variations, adversarial filtering, and human validation. We demonstrate that the newly created dataset BBNLI-next is more challenging than BBNLI: on average, BBNLI-next reduces the accuracy of state-of-the-art NLI models from 95.3%, as observed by BBNLI, to a strikingly low 57.5%. Second, we employ BBNLI-next to showcase the interplay between robustness and bias: we point out shortcomings in current bias scores and propose bias measures that take into account both bias and model brittleness. Third, despite the fact that BBNLI-next was designed with non-generative models in mind, we show that the new dataset is also able to uncover bias in state-of-the-art open-source generative LMs. Note: All datasets included in this work are in English and they address US-centered social biases. In the spirit of efficient NLP research, no model training or fine-tuning was performed to conduct this research. Warning: This paper contains offensive text examples.

相關內容

QMA is the class of languages that can be decided by an efficient quantum verifier given a quantum witness, whereas QCMA is the class of such languages where the efficient quantum verifier only is given a classical witness. A challenging fundamental goal in quantum query complexity is to find a classical oracle separation for these classes. In this work, we offer a new approach towards proving such a separation that is qualitatively different than prior work, and show that our approach is sound assuming a natural statistical conjecture which may have other applications to quantum query complexity lower bounds.

Multimodal large language models (MLLMs) have revolutionized vision-language understanding but are vulnerable to multimodal jailbreak attacks, where adversaries meticulously craft inputs to elicit harmful or inappropriate responses. We propose UniGuard, a novel multimodal safety guardrail that jointly considers the unimodal and cross-modal harmful signals. UniGuard is trained such that the likelihood of generating harmful responses in a toxic corpus is minimized, and can be seamlessly applied to any input prompt during inference with minimal computational costs. Extensive experiments demonstrate the generalizability of UniGuard across multiple modalities and attack strategies. It demonstrates impressive generalizability across multiple state-of-the-art MLLMs, including LLaVA, Gemini Pro, GPT-4, MiniGPT-4, and InstructBLIP, thereby broadening the scope of our solution.

Large language models (LLMs) are widely used but raise ethical concerns due to embedded social biases. This study examines LLM biases against Arabs versus Westerners across eight domains, including women's rights, terrorism, and anti-Semitism and assesses model resistance to perpetuating these biases. To this end, we create two datasets: one to evaluate LLM bias toward Arabs versus Westerners and another to test model safety against prompts that exaggerate negative traits ("jailbreaks"). We evaluate six LLMs -- GPT-4, GPT-4o, LlaMA 3.1 (8B & 405B), Mistral 7B, and Claude 3.5 Sonnet. We find 79% of cases displaying negative biases toward Arabs, with LlaMA 3.1-405B being the most biased. Our jailbreak tests reveal GPT-4o as the most vulnerable, despite being an optimized version, followed by LlaMA 3.1-8B and Mistral 7B. All LLMs except Claude exhibit attack success rates above 87% in three categories. We also find Claude 3.5 Sonnet the safest, but it still displays biases in seven of eight categories. Despite being an optimized version of GPT4, We find GPT-4o to be more prone to biases and jailbreaks, suggesting optimization flaws. Our findings underscore the pressing need for more robust bias mitigation strategies and strengthened security measures in LLMs.

Recent advances in large language models (LLMs) have demonstrated their potential in handling complex reasoning tasks, which are usually achieved by constructing a thought chain to guide the model to solve the problem with multi-step thinking. However, existing methods often remain confined to previously explored solution spaces and thus overlook the critical blind spot within LLMs' cognitive range. To address these issues, we design the Thought Space Explorer (TSE), a novel framework to expand and optimize thought structures to guide LLMs to explore their blind spots of thinking. By generating new reasoning steps and branches based on the original thought structure with various designed strategies, TSE broadens the thought space and alleviates the impact of blind spots for LLM reasoning. Experimental results on multiple levels of reasoning tasks demonstrate the efficacy of TSE. We also conduct extensive analysis to understand how structured and expansive thought can contribute to unleashing the potential of LLM reasoning capabilities.

The reasoning abilities of large language models (LLMs) have improved with chain-of-thought (CoT) prompting, allowing models to solve complex tasks in a stepwise manner. However, training CoT capabilities requires detailed reasoning data, which is often scarce. The self-taught reasoner (STaR) framework addresses this by using reinforcement learning to automatically generate reasoning steps, reducing reliance on human-labeled data. Although STaR and its variants have demonstrated empirical success, a theoretical foundation explaining these improvements is lacking. This work provides a theoretical framework for understanding the effectiveness of reinforcement learning on CoT reasoning and STaR. Our contributions are: (1) an analysis of policy improvement, showing why LLM reasoning improves iteratively with STaR; (2) conditions for convergence to an optimal reasoning policy; (3) an examination of STaR's robustness, explaining how it can improve reasoning even when incorporating occasional incorrect steps; and (4) criteria for the quality of pre-trained models necessary to initiate effective reasoning improvement. This framework aims to bridge empirical findings with theoretical insights, advancing reinforcement learning approaches for reasoning in LLMs.

The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-of-the-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including in-depth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb. LLMs pretrained on FineWeb-Edu exhibit dramatically better performance on knowledge- and reasoning-intensive benchmarks like MMLU and ARC. Along with our datasets, we publicly release our data curation codebase and all of the models trained during our ablation experiments.

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司