Although gradient descent with momentum is widely used in modern deep learning, a concrete understanding of its effects on the training trajectory still remains elusive. In this work, we empirically show that momentum gradient descent with a large learning rate and learning rate warmup displays large catapults, driving the iterates towards flatter minima than those found by gradient descent. We then provide empirical evidence and theoretical intuition that the large catapult is caused by momentum "amplifying" the self-stabilization effect (Damian et al., 2023).
Probabilistic learning to rank (LTR) has been the dominating approach for optimizing the ranking metric, but cannot maximize long-term rewards. Reinforcement learning models have been proposed to maximize user long-term rewards by formulating the recommendation as a sequential decision-making problem, but could only achieve inferior accuracy compared to LTR counterparts, primarily due to the lack of online interactions and the characteristics of ranking. In this paper, we propose a new off-policy value ranking (VR) algorithm that can simultaneously maximize user long-term rewards and optimize the ranking metric offline for improved sample efficiency in a unified Expectation-Maximization (EM) framework. We theoretically and empirically show that the EM process guides the leaned policy to enjoy the benefit of integration of the future reward and ranking metric, and learn without any online interactions. Extensive offline and online experiments demonstrate the effectiveness of our methods.
Integrating deep learning and causal discovery has encouraged us to spot that learning causal structures and representations in dialogue and video is full of challenges. We defined These data forms as "Indefinite Data", characterized by multi-structure data and multi-value representations. Unlike existing adaptable data forms, Indefinite Data still faces gaps in datasets and methods. To address the dataset gap, we release two high-quality datasets - Causalogue and Causaction, containing text dialogue samples and video action samples with causal annotations respectively. Moreover, the method gap arises from the coexistence of multi-structure data and multi-value representations, breaking the assumptions of all current methods and rendering them infeasible on Indefinite Data. To this end, we propose a probabilistic framework as a baseline, incorporating three designed highlights for this gap: 1) establishing Causation Condition of representations using the independence of noise terms under non-fixed causal structures, 2) treating causal strength as a latent variable and measuring the reconstruction loss in the correlation space, and 3) estimating the effects of latent confounders. These highpoints make the probabilistic model capable of overcoming challenges brought by the coexistence of multi-structure data and multi-value representations and pave the way for the extension of latent confounders. Comprehensive experiments have evaluated baseline results of causal structures, causal representations, and confounding disentanglement.
Traffic forecasting, a crucial application of spatio-temporal graph (STG) learning, has traditionally relied on deterministic models for accurate point estimations. Yet, these models fall short of identifying latent risks of unexpected volatility in future observations. To address this gap, probabilistic methods, especially variants of diffusion models, have emerged as uncertainty-aware solutions. However, existing diffusion methods typically focus on generating separate future time series for individual sensors in the traffic network, resulting in insufficient involvement of spatial network characteristics in the probabilistic learning process. To better leverage spatial dependencies and systematic patterns inherent in traffic data, we propose SpecSTG, a novel spectral diffusion framework. Our method generates the Fourier representation of future time series, transforming the learning process into the spectral domain enriched with spatial information. Additionally, our approach incorporates a fast spectral graph convolution designed for Fourier input, alleviating the computational burden associated with existing models. Numerical experiments show that SpecSTG achieves outstanding performance with traffic flow and traffic speed datasets compared to state-of-the-art baselines. The source code for SpecSTG is available at //anonymous.4open.science/r/SpecSTG.
Molecular communications is a technique emulated by researchers, which has already been used by the nature for millions of years. In Molecular Communications via Diffusion (MCvD), messenger molecules are emitted by a transmitter and propagate in the fluidic environment in a random manner. In biological systems, the environment can be considered a bounded space, surrounded by different structures, such as tissues and organs. The propagation of molecules is affected by these structures in the environment, which reflect the molecules upon collision. Hence, understanding the behavior of MCvD systems near reflecting surfaces is important for modeling molecular communication systems analytically. However, deriving the channel response of MCvD systems with an absorbing spherical receiver requires solving the diffusion equation in 3-D space in the presence of a reflecting boundary, which is extremely challenging. Therefore, derivation of the channel response in a bounded environment has remained one of the unanswered questions in the literature. In this paper, a method to model molecular communication systems near reflecting surfaces is proposed, and an analytical closed-form solution for the channel response is derived.
With the emergence of foundation model, this novel paradigm of deep learning has encouraged many powerful achievements in natural language processing and computer vision. There are many advantages of foundation model, such as excellent feature extraction power, mighty generalization ability, great few-shot and zero-shot learning capacity, etc. which are beneficial to vision tasks. As the unique identity of vehicle, different countries and regions have diverse license plate (LP) styles and appearances, and even different types of vehicles have different LPs. However, recent deep learning based license plate detectors are mainly trained on specific datasets, and these limited datasets constrain the effectiveness and robustness of LP detectors. To alleviate the negative impact of limited data, an attempt to exploit the advantages of foundation model is implement in this paper. We customize a vision foundation model, i.e. Segment Anything Model (SAM), for LP detection task and propose the first LP detector based on vision foundation model, named SamLP. Specifically, we design a Low-Rank Adaptation (LoRA) fine-tuning strategy to inject extra parameters into SAM and transfer SAM into LP detection task. And then, we further propose a promptable fine-tuning step to provide SamLP with prompatable segmentation capacity. The experiments show that our proposed SamLP achieves promising detection performance compared to other LP detectors. Meanwhile, the proposed SamLP has great few-shot and zero-shot learning ability, which shows the potential of transferring vision foundation model. The code is available at //github.com/Dinghaoxuan/SamLP
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.