亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increased prevalence of online meetings has significantly enhanced the practicality of a model that can automatically generate the summary of a given meeting. This paper introduces a novel and effective approach to automate the generation of meeting summaries. Current approaches to this problem generate general and basic summaries, considering the meeting simply as a long dialogue. However, our novel algorithms can generate abstractive meeting summaries that are driven by the action items contained in the meeting transcript. This is done by recursively generating summaries and employing our action-item extraction algorithm for each section of the meeting in parallel. All of these sectional summaries are then combined and summarized together to create a coherent and action-item-driven summary. In addition, this paper introduces three novel methods for dividing up long transcripts into topic-based sections to improve the time efficiency of our algorithm, as well as to resolve the issue of large language models (LLMs) forgetting long-term dependencies. Our pipeline achieved a BERTScore of 64.98 across the AMI corpus, which is an approximately 4.98% increase from the current state-of-the-art result produced by a fine-tuned BART (Bidirectional and Auto-Regressive Transformers) model.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Pyramid · Attention · 圖像配準 · Performer ·
2024 年 2 月 14 日

The advent of deep-learning-based registration networks has addressed the time-consuming challenge in traditional iterative methods.However, the potential of current registration networks for comprehensively capturing spatial relationships has not been fully explored, leading to inadequate performance in large-deformation image registration.The pure convolutional neural networks (CNNs) neglect feature enhancement, while current Transformer-based networks are susceptible to information redundancy.To alleviate these issues, we propose a pyramid attention network (PAN) for deformable medical image registration.Specifically, the proposed PAN incorporates a dual-stream pyramid encoder with channel-wise attention to boost the feature representation.Moreover, a multi-head local attention Transformer is introduced as decoder to analyze motion patterns and generate deformation fields.Extensive experiments on two public brain magnetic resonance imaging (MRI) datasets and one abdominal MRI dataset demonstrate that our method achieves favorable registration performance, while outperforming several CNN-based and Transformer-based registration networks.Our code is publicly available at //github.com/JuliusWang-7/PAN.

We introduce a multivariate local-linear estimator for multivariate regression discontinuity designs in which treatment is assigned by crossing a boundary in the space of running variables. The dominant approach uses the Euclidean distance from a boundary point as the scalar running variable; hence, multivariate designs are handled as uni-variate designs. However, the distance running variable is incompatible with the assumption for asymptotic validity. We handle multivariate designs as multivariate. In this study, we develop a novel asymptotic normality for multivariate local-polynomial estimators. Our estimator is asymptotically valid and can capture heterogeneous treatment effects over the boundary. We demonstrate the effectiveness of our estimator through numerical simulations. Our empirical illustration of a Colombian scholarship study reveals a richer heterogeneity (including its absence) of the treatment effect that is hidden in the original estimates.

We present a study on a repeated delegated choice problem, which is the first to consider an online learning variant of Kleinberg and Kleinberg, EC'18. In this model, a principal interacts repeatedly with an agent who possesses an exogenous set of solutions to search for efficient ones. Each solution can yield varying utility for both the principal and the agent, and the agent may propose a solution to maximize its own utility in a selfish manner. To mitigate this behavior, the principal announces an eligible set which screens out a certain set of solutions. The principal, however, does not have any information on the distribution of solutions in advance. Therefore, the principal dynamically announces various eligible sets to efficiently learn the distribution. The principal's objective is to minimize cumulative regret compared to the optimal eligible set in hindsight. We explore two dimensions of the problem setup, whether the agent behaves myopically or strategizes across the rounds, and whether the solutions yield deterministic or stochastic utility. Our analysis mainly characterizes some regimes under which the principal can recover the sublinear regret, thereby shedding light on the rise and fall of the repeated delegation procedure in various regimes.

We consider the setting of online convex optimization with adversarial time-varying constraints in which actions must be feasible w.r.t. a fixed constraint set, and are also required on average to approximately satisfy additional time-varying constraints. Motivated by scenarios in which the fixed feasible set (hard constraint) is difficult to project on, we consider projection-free algorithms that access this set only through a linear optimization oracle (LOO). We present an algorithm that, on a sequence of length $T$ and using overall $T$ calls to the LOO, guarantees $\tilde{O}(T^{3/4})$ regret w.r.t. the losses and $O(T^{7/8})$ constraints violation (ignoring all quantities except for $T$) . In particular, these bounds hold w.r.t. any interval of the sequence. We also present a more efficient algorithm that requires only first-order oracle access to the soft constraints and achieves similar bounds w.r.t. the entire sequence. We extend the latter to the setting of bandit feedback and obtain similar bounds (as a function of $T$) in expectation.

Humans can quickly learn new behaviors by leveraging background world knowledge. In contrast, agents trained with reinforcement learning (RL) typically learn behaviors from scratch. We thus propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied RL. We initialize policies with VLMs by using them as promptable representations: embeddings that are grounded in visual observations and encode semantic features based on the VLM's internal knowledge, as elicited through prompts that provide task context and auxiliary information. We evaluate our approach on visually-complex, long horizon RL tasks in Minecraft and robot navigation in Habitat. We find that our policies trained on embeddings extracted from general-purpose VLMs outperform equivalent policies trained on generic, non-promptable image embeddings. We also find our approach outperforms instruction-following methods and performs comparably to domain-specific embeddings.

We consider a producer's problem of selling a product to a continuum of privacy-conscious consumers, where the producer can implement third-degree price discrimination, offering different prices to different market segments. In the absence of privacy constraints, Bergemann, Brooks, and Morris [2015] characterize the set of all possible consumer-producer utilities, showing that it is a triangle. We consider a privacy mechanism that provides a degree of protection by probabilistically masking each market segment, and we establish that the resultant set of all consumer-producer utilities forms a convex polygon, characterized explicitly as a linear mapping of a certain high-dimensional convex polytope into $\mathbb{R}^2$. This characterization enables us to investigate the impact of the privacy mechanism on both producer and consumer utilities. In particular, we establish that the privacy constraint always hurts the producer by reducing both the maximum and minimum utility achievable. From the consumer's perspective, although the privacy mechanism ensures an increase in the minimum utility compared to the non-private scenario, interestingly, it may reduce the maximum utility. Finally, we demonstrate that increasing the privacy level does not necessarily intensify these effects. For instance, the maximum utility for the producer or the minimum utility for the consumer may exhibit nonmonotonic behavior in response to an increase of the privacy level.

Iterative voting is a natural model of repeated strategic decision-making in social choice when agents have the opportunity to update their votes prior to finalizing the group decision. Prior work has analyzed the efficacy of iterative plurality on the welfare of the chosen outcome at equilibrium, relative to the truthful vote profile, via an adaptation of the price of anarchy. However, prior analyses have only studied the worst-case and average-case performances when agents' preferences are distributed by the impartial culture. This work extends average-case analyses to a wider class of distributions and distinguishes when iterative plurality improves or degrades asymptotic welfare.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司