Attack paths are the potential chain of malicious activities an attacker performs to compromise network assets and acquire privileges through exploiting network vulnerabilities. Attack path analysis helps organizations to identify new/unknown chains of attack vectors that reach critical assets within the network, as opposed to individual attack vectors in signature-based attack analysis. Timely identification of attack paths enables proactive mitigation of threats. Nevertheless, manual analysis of complex network configurations, vulnerabilities, and security events to identify attack paths is rarely feasible. This work proposes a novel transferable graph neural network-based model for shortest path identification. The proposed shortest path detection approach, integrated with a novel holistic and comprehensive model for identifying potential network vulnerabilities interactions, is then utilized to detect network attack paths. Our framework automates the risk assessment of attack paths indicating the propensity of the paths to enable the compromise of highly-critical assets (e.g., databases) given the network configuration, assets' criticality, and the severity of the vulnerabilities in-path to the asset. The proposed framework, named SPGNN-API, incorporates automated threat mitigation through a proactive timely tuning of the network firewall rules and zero-trust policies to break critical attack paths and bolster cyber defenses. Our evaluation process is twofold; evaluating the performance of the shortest path identification and assessing the attack path detection accuracy. Our results show that SPGNN-API largely outperforms the baseline model for shortest path identification with an average accuracy >= 95% and successfully detects 100% of the potentially compromised assets, outperforming the attack graph baseline by 47%.
The generalization of decision-making agents encompasses two fundamental elements: learning from past experiences and reasoning in novel contexts. However, the predominant emphasis in most interactive environments is on learning, often at the expense of complexity in reasoning. In this paper, we introduce CivRealm, an environment inspired by the Civilization game. Civilization's profound alignment with human history and society necessitates sophisticated learning, while its ever-changing situations demand strong reasoning to generalize. Particularly, CivRealm sets up an imperfect-information general-sum game with a changing number of players; it presents a plethora of complex features, challenging the agent to deal with open-ended stochastic environments that require diplomacy and negotiation skills. Within CivRealm, we provide interfaces for two typical agent types: tensor-based agents that focus on learning, and language-based agents that emphasize reasoning. To catalyze further research, we present initial results for both paradigms. The canonical RL-based agents exhibit reasonable performance in mini-games, whereas both RL- and LLM-based agents struggle to make substantial progress in the full game. Overall, CivRealm stands as a unique learning and reasoning challenge for decision-making agents. The code is available at //github.com/bigai-ai/civrealm.
Unsupervised anomaly detection has gained significant attention in the field of medical imaging due to its capability of relieving the costly pixel-level annotation. To achieve this, modern approaches usually utilize generative models to produce healthy references of the diseased images and then identify the abnormalities by comparing the healthy references and the original diseased images. Recently, diffusion models have exhibited promising potential for unsupervised anomaly detection in medical images for their good mode coverage and high sample quality. However, the intrinsic characteristics of the medical images, e.g. the low contrast, and the intricate anatomical structure of the human body make the reconstruction challenging. Besides, the global information of medical images often remain underutilized. To address these two issues, we propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images. The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions. Extensive experiments on data of tumors and multiple sclerosis lesions demonstrate the effectiveness of our method.
The classical path planners, such as sampling-based path planners, have the limitations of sensitivity to the initial solution and slow convergence to the optimal solution. However, finding a near-optimal solution in a short period is challenging in many applications such as the autonomous vehicle with limited power/fuel. To achieve an end-to-end near-optimal path planner, we first divide the path planning problem into two subproblems, which are path's space segmentation and waypoints generation in the given path's space. We further propose a two-level cascade neural network named Path Planning Network (PPNet) to solve the path planning problem by solving the abovementioned subproblems. Moreover, we propose a novel efficient data generation method for path planning named EDaGe-PP. The results show the total computation time is less than 1/33 and the success rate of PPNet trained by the dataset that is generated by EDaGe-PP is about $2 \times$ compared to other methods. We validate PPNet against state-of-the-art path planning methods. The results show PPNet can find a near-optimal solution in 15.3ms, which is much shorter than the state-of-the-art path planners.
Neural networks are known to be susceptible to adversarial samples: small variations of natural examples crafted to deliberately mislead the models. While they can be easily generated using gradient-based techniques in digital and physical scenarios, they often differ greatly from the actual data distribution of natural images, resulting in a trade-off between strength and stealthiness. In this paper, we propose a novel framework dubbed Diffusion-Based Projected Gradient Descent (Diff-PGD) for generating realistic adversarial samples. By exploiting a gradient guided by a diffusion model, Diff-PGD ensures that adversarial samples remain close to the original data distribution while maintaining their effectiveness. Moreover, our framework can be easily customized for specific tasks such as digital attacks, physical-world attacks, and style-based attacks. Compared with existing methods for generating natural-style adversarial samples, our framework enables the separation of optimizing adversarial loss from other surrogate losses (e.g., content/smoothness/style loss), making it more stable and controllable. Finally, we demonstrate that the samples generated using Diff-PGD have better transferability and anti-purification power than traditional gradient-based methods. Code will be released in //github.com/xavihart/Diff-PGD
Knowledge graph (KG) based reasoning has been regarded as an effective means for the analysis of semantic networks and is of great usefulness in areas of information retrieval, recommendation, decision-making, and man-machine interaction. It is widely used in recommendation, decision-making, question-answering, search, and other fields. However, previous studies mainly used low-level knowledge in the KG for reasoning, which may result in insufficient generalization and poor robustness of reasoning. To this end, this paper proposes a new inference approach using a novel knowledge augmentation strategy to improve the generalization capability of KG. This framework extracts high-level pyramidal knowledge from low-level knowledge and applies it to reasoning in a multi-level hierarchical KG, called knowledge pyramid in this paper. We tested some medical data sets using the proposed approach, and the experimental results show that the proposed knowledge pyramid has improved the knowledge inference performance with better generalization. Especially, when there are fewer training samples, the inference accuracy can be significantly improved.
Beyond 5G and 6G networks are expected to support new and challenging use cases and applications that depend on a certain level of Quality of Service (QoS) to operate smoothly. Predicting the QoS in a timely manner is of high importance, especially for safety-critical applications as in the case of vehicular communications. Although until recent years the QoS prediction has been carried out by centralized Artificial Intelligence (AI) solutions, a number of privacy, computational, and operational concerns have emerged. Alternative solutions have been surfaced (e.g. Split Learning, Federated Learning), distributing AI tasks of reduced complexity across nodes, while preserving the privacy of the data. However, new challenges rise when it comes to scalable distributed learning approaches, taking into account the heterogeneous nature of future wireless networks. The current work proposes DISTINQT, a privacy-aware distributed learning framework for QoS prediction. Our framework supports multiple heterogeneous nodes, in terms of data types and model architectures, by sharing computations across them. This, enables the incorporation of diverse knowledge into a sole learning process that will enhance the robustness and generalization capabilities of the final QoS prediction model. DISTINQT also contributes to data privacy preservation by encoding any raw input data into a non-linear latent representation before any transmission. Evaluation results showcase that our framework achieves a statistically identical performance compared to its centralized version and an average performance improvement of up to 65% against six state-of-the-art centralized baseline solutions in the Tele-Operated Driving use case.
In an era characterized by the pervasive integration of artificial intelligence into decision-making processes across diverse industries, the demand for trust has never been more pronounced. This thesis embarks on a comprehensive exploration of bias and fairness, with a particular emphasis on their ramifications within the banking sector, where AI-driven decisions bear substantial societal consequences. In this context, the seamless integration of fairness, explainability, and human oversight is of utmost importance, culminating in the establishment of what is commonly referred to as "Responsible AI". This emphasizes the critical nature of addressing biases within the development of a corporate culture that aligns seamlessly with both AI regulations and universal human rights standards, particularly in the realm of automated decision-making systems. Nowadays, embedding ethical principles into the development, training, and deployment of AI models is crucial for compliance with forthcoming European regulations and for promoting societal good. This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias. These contributions are validated through their practical application in real-world scenarios, in collaboration with Intesa Sanpaolo. This collaborative effort not only contributes to our understanding of fairness but also provides practical tools for the responsible implementation of AI-based decision-making systems. In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages, further promoting progress in the field of AI fairness.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.