Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
Semiparametric language models (LMs) have shown promise in continuously learning from new text data by combining a parameterized neural LM with a growable non-parametric memory for memorizing new content. However, conventional semiparametric LMs will finally become prohibitive for computing and storing if they are applied to continual learning over streaming data, because the non-parametric memory grows linearly with the amount of data they learn from over time. To address the issue of scalability, we present a simple and intuitive approach called Selective Memorization (SeMem), which only memorizes difficult samples that the model is likely to struggle with. We demonstrate that SeMem improves the scalability of semiparametric LMs for continual learning over streaming data in two ways: (1) data-wise scalability: as the model becomes stronger through continual learning, it will encounter fewer difficult cases that need to be memorized, causing the growth of the non-parametric memory to slow down over time rather than growing at a linear rate with the size of training data; (2) model-wise scalability: SeMem allows a larger model to memorize fewer samples than its smaller counterpart because it is rarer for a larger model to encounter incomprehensible cases, resulting in a non-parametric memory that does not scale linearly with model size. We conduct extensive experiments in language modeling and downstream tasks to test SeMem's results, showing SeMem enables a semiparametric LM to be a scalable continual learner with little forgetting.
Statistical models are central to machine learning with broad applicability across a range of downstream tasks. The models are controlled by free parameters that are typically estimated from data by maximum-likelihood estimation or approximations thereof. However, when faced with real-world datasets many of the models run into a critical issue: they are formulated in terms of fully-observed data, whereas in practice the datasets are plagued with missing data. The theory of statistical model estimation from incomplete data is conceptually similar to the estimation of latent-variable models, where powerful tools such as variational inference (VI) exist. However, in contrast to standard latent-variable models, parameter estimation with incomplete data often requires estimating exponentially-many conditional distributions of the missing variables, hence making standard VI methods intractable. We address this gap by introducing variational Gibbs inference (VGI), a new general-purpose method to estimate the parameters of statistical models from incomplete data. We validate VGI on a set of synthetic and real-world estimation tasks, estimating important machine learning models such as VAEs and normalising flows from incomplete data. The proposed method, whilst general-purpose, achieves competitive or better performance than existing model-specific estimation methods.
In addition to generating data and annotations, devising sensible data splitting strategies and evaluation metrics is essential for the creation of a benchmark dataset. This practice ensures consensus on the usage of the data, homogeneous assessment, and uniform comparison of research methods on the dataset. This study focuses on CholecT50, which is a 50 video surgical dataset that formalizes surgical activities as triplets of <instrument, verb, target>. In this paper, we introduce the standard splits for the CholecT50 and CholecT45 datasets and show how they compare with existing use of the dataset. CholecT45 is the first public release of 45 videos of CholecT50 dataset. We also develop a metrics library, ivtmetrics, for model evaluation on surgical triplets. Furthermore, we conduct a benchmark study by reproducing baseline methods in the most predominantly used deep learning frameworks (PyTorch and TensorFlow) to evaluate them using the proposed data splits and metrics and release them publicly to support future research. The proposed data splits and evaluation metrics will enable global tracking of research progress on the dataset and facilitate optimal model selection for further deployment.
We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of $C^{\infty}$ bump functions of varying support sizes. We demonstrate that WENDy is a highly robust and efficient method for parameter inference in differential equations. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. We illustrate the method and its performance in some common population and neuroscience models, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available at (//github.com/MathBioCU/WENDy).
Measurement error is ubiquitous in many variables - from blood pressure recordings in physiology to intelligence measures in psychology. Structural equation models (SEMs) account for the process of measurement by explicitly distinguishing between latent variables and their measurement indicators. Users often fit entire SEMs to data, but this can fail if some model parameters are not identified. The model-implied instrumental variables (MIIVs) approach is a more flexible alternative that can estimate subsets of model parameters in identified equations. Numerous methods to identify individual parameters also exist in the field of graphical models (such as DAGs), but many of these do not account for measurement effects. Here, we take the concept of "latent-to-observed" (L2O) transformation from the MIIV approach and develop an equivalent graphical L2O transformation that allows applying existing graphical criteria to latent parameters in SEMs. We combine L2O transformation with graphical instrumental variable criteria to obtain an efficient algorithm for non-iterative parameter identification in SEMs with latent variables. We prove that this graphical L2O transformation with the instrumental set criterion is equivalent to the state-of-the-art MIIV approach for SEMs, and show that it can lead to novel identification strategies when combined with other graphical criteria.
Semi-supervised learning is extensively applied these days to estimate classifiers from training data in which not all of the labels of the feature vectors are available. With the use of generative models that propose a form for the joint distribution of a feature vector and its ground-truth label, the Bayes' classifier can be estimated via maximum likelihood on partially classified training data. To increase the accuracy of this sample classifier, \cite{ahfock2020apparent} proposed that a missing-label mechanism be adopted and that the Bayes' classifier be estimated on the basis of the full likelihood formed in the framework that models the probability of a missing label given its observed feature vector in terms of its entropy. In the case of two Gaussian classes with a common covariance matrix, it was shown that the accuracy of the classifier so estimated from the partially classified training data can even have lower error rate than if it were estimated from the sample completely classified. Here, we focus on an algorithm for estimating the Bayes' classifier via the full likelihood in the case of multiple Gaussian classes with arbitrary covariance matrices. Different strategies for initializing the algorithm are discussed and illustrated. A new \proglang{R} package with these tools, \texttt{gmmsslm}, is demonstrated on real data.
Discrete data are abundant and often arise as counts or rounded data. These data commonly exhibit complex distributional features such as zero-inflation, over-/under-dispersion, boundedness, and heaping, which render many parametric models inadequate. Yet even for parametric regression models, approximations such as MCMC typically are needed for posterior inference. This paper introduces a Bayesian modeling and algorithmic framework that enables semiparametric regression analysis for discrete data with Monte Carlo (not MCMC) sampling. The proposed approach pairs a nonparametric marginal model with a latent linear regression model to encourage both flexibility and interpretability, and delivers posterior consistency even under model misspecification. For a parametric or large-sample approximation of this model, we identify a class of conjugate priors with (pseudo) closed-form posteriors. All posterior and predictive distributions are available analytically or via direct Monte Carlo sampling. These tools are broadly useful for linear regression, nonlinear models via basis expansions, and variable selection with discrete data. Simulation studies demonstrate significant advantages in computing, prediction, estimation, and selection relative to existing alternatives. This novel approach is applied successfully to self-reported mental health data that exhibit zero-inflation, overdispersion, boundedness, and heaping.
Conditional local independence is an asymmetric independence relation among continuous time stochastic processes. It describes whether the evolution of one process is directly influenced by another process given the histories of additional processes, and it is important for the description and learning of causal relations among processes. We develop a model-free framework for testing the hypothesis that a counting process is conditionally locally independent of another process. To this end, we introduce a new functional parameter called the Local Covariance Measure (LCM), which quantifies deviations from the hypothesis. Following the principles of double machine learning, we propose an estimator of the LCM and a test of the hypothesis using nonparametric estimators and sample splitting or cross-fitting. We call this test the (cross-fitted) Local Covariance Test ((X)-LCT), and we show that its level and power can be controlled uniformly, provided that the nonparametric estimators are consistent with modest rates. We illustrate the theory by an example based on a marginalized Cox model with time-dependent covariates, and we show in simulations that when double machine learning is used in combination with cross-fitting, then the test works well without restrictive parametric assumptions.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.