亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers a generalized multiple-input multiple-output (GMIMO) with practical assumptions, such as massive antennas, practical channel coding, arbitrary input distributions, and general right-unitarily-invariant channel matrices (covering Rayleigh fading, certain ill-conditioned and correlated channel matrices). Orthogonal/vector approximate message passing (OAMP/VAMP) has been proved to be information-theoretically optimal in GMIMO, but it is limited to high complexity. Meanwhile, low-complexity memory approximate message passing (MAMP) was shown to be Bayes optimal in GMIMO, but channel coding was ignored. Therefore, how to design a low-complexity and information-theoretic optimal receiver for GMIMO is still an open issue. In this paper, we propose an information-theoretic optimal MAMP receiver for coded GMIMO, whose achievable rate analysis and optimal coding principle are provided to demonstrate its information-theoretic optimality. Specifically, state evolution (SE) for MAMP is intricately multi-dimensional because of the nature of local memory detection. To this end, a fixed-point consistency lemma is proposed to derive the simplified variational SE (VSE) for MAMP, based on which the achievable rate of MAMP is calculated, and the optimal coding principle is derived to maximize the achievable rate. Subsequently, we prove the information-theoretic optimality of MAMP. Numerical results show that the finite-length performances of MAMP with optimized LDPC codes are about 1.0 - 2.7 dB away from the associated constrained capacities. It is worth noting that MAMP can achieve the same performance as OAMP/VAMP with 0.4% of the time consumption for large-scale systems.

相關內容

The primary contribution of this paper is new methods for reducing communication in the sampling step for distributed GNN training. Here, we propose a matrix-based bulk sampling approach that expresses sampling as a sparse matrix multiplication (SpGEMM) and samples multiple minibatches at once. When the input graph topology does not fit on a single device, our method distributes the graph and use communication-avoiding SpGEMM algorithms to scale GNN minibatch sampling, enabling GNN training on much larger graphs than those that can fit into a single device memory. When the input graph topology (but not the embeddings) fits in the memory of one GPU, our approach (1) performs sampling without communication, (2) amortizes the overheads of sampling a minibatch, and (3) can represent multiple sampling algorithms by simply using different matrix constructions. In addition to new methods for sampling, we show that judiciously replicating feature data with a simple all-to-all exchange can outperform current methods for the feature extraction step in distributed GNN training. We provide experimental results on the largest Open Graph Benchmark (OGB) datasets on $128$ GPUs, and show that our pipeline is $2.5\times$ faster Quiver (a distributed extension to PyTorch-Geometric) on a $3$-layer GraphSAGE network. On datasets outside of OGB, we show a $8.46\times$ speedup on $128$ GPUs in-per epoch time. Finally, we show scaling when the graph is distributed across GPUs and scaling for both node-wise and layer-wise sampling algorithms

This paper considers the problem of evaluating an autonomous system's competency in performing a task, particularly when working in dynamic and uncertain environments. The inherent opacity of machine learning models, from the perspective of the user, often described as a `black box', poses a challenge. To overcome this, we propose using a measure called the Surprise index, which leverages available measurement data to quantify whether the dynamic system performs as expected. We show that the surprise index can be computed in closed form for dynamic systems when observed evidence in a probabilistic model if the joint distribution for that evidence follows a multivariate Gaussian marginal distribution. We then apply it to a nonlinear spacecraft maneuver problem, where actions are chosen by a reinforcement learning agent and show it can indicate how well the trajectory follows the required orbit.

This paper presents Adamastor, a new low latency and scalable decentralized anonymous payment system, which is an extension of Ring Confidential Transactions (RingCT) that is compatible with consensus algorithms that use Delegated Proof of Stake (DPoS) as a defense mechanism against Sybil attacks. Adamastor also includes a new Decoy Selection Algorithm (DSA) that can be of independent interest, called SimpleDSA, a crucial aspect of protocols that use ring signatures to anonymize the sender. SimpleDSA offers security against homogeneity attacks and chain analysis. Moreover, it enables the pruning of spent outputs, addressing the issue of perpetual output growth commonly associated with such schemes. Adamastor is implemented and evaluated using the Narwhal consensus algorithm, demonstrating significantly lower latency compared to Proof of Work based cryptocurrencies. Adamastor also exhibits ample scalability, making it suitable for a decentralized and anonymous payment network.

Before implementing a function, programmers are encouraged to write a purpose statement i.e., a short, natural-language explanation of what the function computes. A purpose statement may be ambiguous i.e., it may fail to specify the intended behaviour when two or more inequivalent computations are plausible on certain inputs. Our paper makes four contributions. First, we propose a novel heuristic that suggests such inputs using Large Language Models (LLMs). Using these suggestions, the programmer may choose to clarify the purpose statement (e.g., by providing a functional example that specifies the intended behaviour on such an input). Second, to assess the quality of inputs suggested by our heuristic, and to facilitate future research, we create an open dataset of purpose statements with known ambiguities. Third, we compare our heuristic against GitHub Copilot's Chat feature, which can suggest similar inputs when prompted to generate unit tests. Fourth, we provide an open-source implementation of our heuristic as an extension to Visual Studio Code for the Python programming language, where purpose statements and functional examples are specified as docstrings and doctests respectively. We believe that this tool will be particularly helpful to novice programmers and instructors.

In this paper, a novel tool prototype for harvesting table-top grown strawberries is presented. With robustness against strawberry localization error of 15mm and average cycle time of 8.02 seconds at 50% of maximum operational velocity, it provides a promising contribution towards full automation of strawberry harvesting. In addition, the tool has an overall fruit-interacting width of 35mm that greatly enhances reach-ability due to the minimal footprint. A complete harvesting system is also proposed that can be readily mounted to a mobile platform for field tests. An experimental demonstration is performed to showcase the new methodology and derive relevant metrics.

Oblivious routing is a well-studied paradigm that uses static precomputed routing tables for selecting routing paths within a network. Existing oblivious routing schemes with polylogarithmic competitive ratio for general networks are tree-based, in the sense that routing is performed according to a convex combination of trees. However, this restriction to trees leads to a construction that has time quadratic in the size of the network and does not parallelize well. In this paper we study oblivious routing schemes based on electrical routing. In particular, we show that general networks with $n$ vertices and $m$ edges admit a routing scheme that has competitive ratio $O(\log^2 n)$ and consists of a convex combination of only $O(\sqrt{m})$ electrical routings. This immediately leads to an improved construction algorithm with time $\tilde{O}(m^{3/2})$ that can also be implemented in parallel with $\tilde{O}(\sqrt{m})$ depth.

Efficient computation or approximation of Levenshtein distance, a widely-used metric for evaluating sequence similarity, has attracted significant attention with the emergence of DNA storage and other biological applications. Sequence embedding, which maps Levenshtein distance to a conventional distance between embedding vectors, has emerged as a promising solution. In this paper, a novel neural network-based sequence embedding technique using Poisson regression is proposed. We first provide a theoretical analysis of the impact of embedding dimension on model performance and present a criterion for selecting an appropriate embedding dimension. Under this embedding dimension, the Poisson regression is introduced by assuming the Levenshtein distance between sequences of fixed length following a Poisson distribution, which naturally aligns with the definition of Levenshtein distance. Moreover, from the perspective of the distribution of embedding distances, Poisson regression approximates the negative log likelihood of the chi-squared distribution and offers advancements in removing the skewness. Through comprehensive experiments on real DNA storage data, we demonstrate the superior performance of the proposed method compared to state-of-the-art approaches.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

北京阿比特科技有限公司