亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Semicontinuous outcomes commonly arise in a wide variety of fields, such as insurance claims, healthcare expenditures, rainfall amounts, and alcohol consumption. Regression models, including Tobit, Tweedie, and two-part models, are widely employed to understand the relationship between semicontinuous outcomes and covariates. Given the potential detrimental consequences of model misspecification, after fitting a regression model, it is of prime importance to check the adequacy of the model. However, due to the point mass at zero, standard diagnostic tools for regression models (e.g., deviance and Pearson residuals) are not informative for semicontinuous data. To bridge this gap, we propose a new type of residuals for semicontinuous outcomes that are applicable to general regression models. Under the correctly specified model, the proposed residuals converge to being uniformly distributed, and when the model is misspecified, they significantly depart from this pattern. In addition to in-sample validation, the proposed methodology can also be employed to evaluate predictive distributions. We demonstrate the effectiveness of the proposed tool using health expenditure data from the US Medical Expenditure Panel Survey.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Attention · INFORMS · Pivotal(公司) · HTTPS ·
2024 年 2 月 26 日

A map, as crucial information for downstream applications of an autonomous driving system, is usually represented in lanelines or centerlines. However, existing literature on map learning primarily focuses on either detecting geometry-based lanelines or perceiving topology relationships of centerlines. Both of these methods ignore the intrinsic relationship of lanelines and centerlines, that lanelines bind centerlines. While simply predicting both types of lane in one model is mutually excluded in learning objective, we advocate lane segment as a new representation that seamlessly incorporates both geometry and topology information. Thus, we introduce LaneSegNet, the first end-to-end mapping network generating lane segments to obtain a complete representation of the road structure. Our algorithm features two key modifications. One is a lane attention module to capture pivotal region details within the long-range feature space. Another is an identical initialization strategy for reference points, which enhances the learning of positional priors for lane attention. On the OpenLane-V2 dataset, LaneSegNet outperforms previous counterparts by a substantial gain across three tasks, \textit{i.e.}, map element detection (+4.8 mAP), centerline perception (+6.9 DET$_l$), and the newly defined one, lane segment perception (+5.6 mAP). Furthermore, it obtains a real-time inference speed of 14.7 FPS. Code is accessible at //github.com/OpenDriveLab/LaneSegNet.

Multimodal recommender systems amalgamate multimodal information (e.g., textual descriptions, images) into a collaborative filtering framework to provide more accurate recommendations. While the incorporation of multimodal information could enhance the interpretability of these systems, current multimodal models represent users and items utilizing entangled numerical vectors, rendering them arduous to interpret. To address this, we propose a Disentangled Graph Variational Auto-Encoder (DGVAE) that aims to enhance both model and recommendation interpretability. DGVAE initially projects multimodal information into textual contents, such as converting images to text, by harnessing state-of-the-art multimodal pre-training technologies. It then constructs a frozen item-item graph and encodes the contents and interactions into two sets of disentangled representations utilizing a simplified residual graph convolutional network. DGVAE further regularizes these disentangled representations through mutual information maximization, aligning the representations derived from the interactions between users and items with those learned from textual content. This alignment facilitates the interpretation of user binary interactions via text. Our empirical analysis conducted on three real-world datasets demonstrates that DGVAE significantly surpasses the performance of state-of-the-art baselines by a margin of 10.02%. We also furnish a case study from a real-world dataset to illustrate the interpretability of DGVAE. Code is available at: \url{//github.com/enoche/DGVAE}.

Recommender systems have seen significant advancements with the influence of deep learning and graph neural networks, particularly in capturing complex user-item relationships. However, these graph-based recommenders heavily depend on ID-based data, potentially disregarding valuable textual information associated with users and items, resulting in less informative learned representations. Moreover, the utilization of implicit feedback data introduces potential noise and bias, posing challenges for the effectiveness of user preference learning. While the integration of large language models (LLMs) into traditional ID-based recommenders has gained attention, challenges such as scalability issues, limitations in text-only reliance, and prompt input constraints need to be addressed for effective implementation in practical recommender systems. To address these challenges, we propose a model-agnostic framework RLMRec that aims to enhance existing recommenders with LLM-empowered representation learning. It proposes a recommendation paradigm that integrates representation learning with LLMs to capture intricate semantic aspects of user behaviors and preferences. RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework. This work further establish a theoretical foundation demonstrating that incorporating textual signals through mutual information maximization enhances the quality of representations. In our evaluation, we integrate RLMRec with state-of-the-art recommender models, while also analyzing its efficiency and robustness to noise data. Our implementation codes are available at //github.com/HKUDS/RLMRec.

Gaussian and discrete non-Gaussian spatial datasets are prevalent across many fields such as public health, ecology, geosciences, and social sciences. Bayesian spatial generalized linear mixed models (SGLMMs) are a flexible class of models designed for these data, but SGLMMs do not scale well, even to moderately large datasets. State-of-the-art scalable SGLMMs (i.e., basis representations or sparse covariance/precision matrices) require posterior sampling via Markov chain Monte Carlo (MCMC), which can be prohibitive for large datasets. While variational Bayes (VB) have been extended to SGLMMs, their focus has primarily been on smaller spatial datasets. In this study, we propose two computationally efficient VB approaches for modeling moderate-sized and massive (millions of locations) Gaussian and discrete non-Gaussian spatial data. Our scalable VB method embeds semi-parametric approximations for the latent spatial random processes and parallel computing offered by modern high-performance computing systems. Our approaches deliver nearly identical inferential and predictive performance compared to 'gold standard' methods but achieve computational speedups of up to 1000x. We demonstrate our approaches through a comparative numerical study as well as applications to two real-world datasets. Our proposed VB methodology enables practitioners to model millions of non-Gaussian spatial observations using a standard laptop within a short timeframe.

In this work we consider a generalization of the well-known multivehicle routing problem: given a network, a set of agents occupying a subset of its nodes, and a set of tasks, we seek a minimum cost sequence of movements subject to the constraint that each task is visited by some agent at least once. The classical version of this problem assumes a central computational server that observes the entire state of the system perfectly and directs individual agents according to a centralized control scheme. In contrast, we assume that there is no centralized server and that each agent is an individual processor with no a priori knowledge of the underlying network (including task and agent locations). Moreover, our agents possess strictly local communication and sensing capabilities (restricted to a fixed radius around their respective locations), aligning more closely with several real-world multiagent applications. These restrictions introduce many challenges that are overcome through local information sharing and direct coordination between agents. We present a fully distributed, online, and scalable reinforcement learning algorithm for this problem whereby agents self-organize into local clusters and independently apply a multiagent rollout scheme locally to each cluster. We demonstrate empirically via extensive simulations that there exists a critical sensing radius beyond which the distributed rollout algorithm begins to improve over a greedy base policy. This critical sensing radius grows proportionally to the $\log^*$ function of the size of the network, and is, therefore, a small constant for any relevant network. Our decentralized reinforcement learning algorithm achieves approximately a factor of two cost improvement over the base policy for a range of radii bounded from below and above by two and three times the critical sensing radius, respectively.

The leading strategy for analyzing unstructured data uses two steps. First, latent variables of economic interest are estimated with an upstream information retrieval model. Second, the estimates are treated as "data" in a downstream econometric model. We establish theoretical arguments for why this two-step strategy leads to biased inference in empirically plausible settings. More constructively, we propose a one-step strategy for valid inference that uses the upstream and downstream models jointly. The one-step strategy (i) substantially reduces bias in simulations; (ii) has quantitatively important effects in a leading application using CEO time-use data; and (iii) can be readily adapted by applied researchers.

Stock market and cryptocurrency forecasting is very important to investors as they aspire to achieve even the slightest improvement to their buy or hold strategies so that they may increase profitability. However, obtaining accurate and reliable predictions is challenging, noting that accuracy does not equate to reliability, especially when financial time-series forecasting is applied owing to its complex and chaotic tendencies. To mitigate this complexity, this study provides a comprehensive method for forecasting financial time series based on tactical input output feature mapping techniques using machine learning (ML) models. During the prediction process, selecting the relevant indicators is vital to obtaining the desired results. In the financial field, limited attention has been paid to this problem with ML solutions. We investigate the use of feature selection with annealing (FSA) for the first time in this field, and we apply the least absolute shrinkage and selection operator (Lasso) method to select the features from more than 1,000 candidates obtained from 26 technical classifiers with different periods and lags. Boruta (BOR) feature selection, a wrapper method, is used as a baseline for comparison. Logistic regression (LR), extreme gradient boosting (XGBoost), and long short-term memory (LSTM) are then applied to the selected features for forecasting purposes using 10 different financial datasets containing cryptocurrencies and stocks. The dependent variables consisted of daily logarithmic returns and trends. The mean-squared error for regression, area under the receiver operating characteristic curve, and classification accuracy were used to evaluate model performance, and the statistical significance of the forecasting results was tested using paired t-tests. Experiments indicate that the FSA algorithm increased the performance of ML models, regardless of problem type.

Recent years, large scale clinical data like patient surveys and medical record data are playing an increasing role in medical data science. These large-scale clinical data, collectively referred to as "real-world data (RWD)". It is expected to be widely used in large-scale observational studies of specific diseases, personal medicine or precise medicine, finding the responder of drugs or treatments. Applying RWD for estimating heterogeneous treat ment effect (HTE) has already been a trending topic. HTE has the potential to considerably impact the development of precision medicine by helping doctors make more informed precise treatment decisions and provide more personalized medical care. The statistical models used to estimate HTE is called treatment effect models. Powers et al. proposed a some treatment effect models for observational study, where they pointed out that the bagging causal MARS (BCM) performs outstanding compared to other models. While BCM has excellent performance, it still has room for improvement. In this paper, we proposed a new treatment effect model called shrinkage causal bagging MARS method to improve their shared basis conditional mean regression framework based on the following points: first, we estimated basis functions using transformed outcome, then applied the group LASSO method to optimize the model and estimate parameters. Besides, we are focusing on pursing better interpretability of model to improve the ethical acceptance. We designed simulations to verify the performance of our proposed method and our proposed method superior in mean square error and bias in most simulation settings. Also we applied it to real data set ACTG 175 to verify its usability, where our results are supported by previous studies.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司