亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analyzing large sets of visual media remains a challenging task, particularly in mixed-method studies dealing with problematic information and human subjects. Using AI tools in such analyses risks reifying and exacerbating biases, as well as untenable computational and cost limitations. As such, we turn to adopting geometric computer graphics and vision methods towards analyzing a large set of images from a problematic information campaign, in conjunction with human-in-the-loop qualitative analysis. We illustrate an effective case of this approach with the implementation of color quantization towards analyzing online hate image at the US-Mexico border, along with a historicist trace of the history of color quantization and skin tone scales, to inform our usage and reclamation of these methodologies from their racist origins. To that end, we scaffold motivations and the need for more researchers to consider the advantages and risks of reclaiming such methodologies in their own work, situated in our case study.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · Performer · 模型評估 · 變換 ·
2024 年 9 月 26 日

The advent of edge computing has made real-time intelligent video analytics feasible. Previous works, based on traditional model architecture (e.g., CNN, RNN, etc.), employ various strategies to filter out non-region-of-interest content to minimize bandwidth and computation consumption but show inferior performance in adverse environments. Recently, visual foundation models based on transformers have shown great performance in adverse environments due to their amazing generalization capability. However, they require a large amount of computation power, which limits their applications in real-time intelligent video analytics. In this paper, we find visual foundation models like Vision Transformer (ViT) also have a dedicated acceleration mechanism for video analytics. To this end, we introduce Arena, an end-to-end edge-assisted video inference acceleration system based on ViT. We leverage the capability of ViT that can be accelerated through token pruning by only offloading and feeding Patches-of-Interest to the downstream models. Additionally, we design an adaptive keyframe inference switching algorithm tailored to different videos, capable of adapting to the current video content to jointly optimize accuracy and bandwidth. Through extensive experiments, our findings reveal that Arena can boost inference speeds by up to 1.58\(\times\) and 1.82\(\times\) on average while consuming only 47\% and 31\% of the bandwidth, respectively, all with high inference accuracy.

This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.

Binary multipliers have long been a staple component in digital circuitry, serving crucial roles in microprocessor design, digital signal processing units and many more applications. This work presents a unique design for a multiplier that utilizes a reformed-array-logic approach to compute the product of two unsigned binary numbers. We employed a multiplexer and a barrel shifter to multiply partial products in a single clock cycle to speed up the traditional array logic. In addition, we have employed a combination of Carry Save Adders (CSA) and Ripple Carry Adders (RCA) to accumulate the partial products instead of using standalone RCAs to speed up the multiplication process further. Finally, we have demonstrated our design to perform multiplication of two 16-bit unsigned binary numbers on Cadence Virtuoso. Our design is modular and can be scaled up or down to accommodate the multiplication of any n-bit unsigned numbers.

Technical debt refers to the consequences of sub-optimal decisions made during software development that prioritize short-term benefits over long-term maintainability. Self-Admitted Technical Debt (SATD) is a specific form of technical debt, explicitly documented by developers within software artifacts such as source code comments and commit messages. As SATD can hinder software development and maintenance, it is crucial to estimate the effort required to repay it so that we can effectively prioritize it. However, we currently lack an understanding of SATD repayment, and more importantly, we lack approaches that can automatically estimate the repayment effort of SATD based on its textual description. To bridge this gap, we have curated a comprehensive dataset of 341,740 SATD items from 2,568,728 commits across 1,060 Apache repositories and analyzed the repayment effort comparing SATD vs. non-SATD items, as well as different types of SATD items. Furthermore, we proposed an innovative approach for Predicting Repayment Effort of SATD using Textual Information, named PRESTI. Our findings show that different types of SATD require varying levels of repayment effort, with code/design, requirement, and test debt demanding greater effort compared to non-SATD items, while documentation debt requires less. We have evaluated our approaches, particularly BERT- and TextCNN-based models, which outperform traditional machine learning methods and the baseline in estimating repayment effort. Additionally, we summarize keywords associated with varying levels of repayment effort that occur during SATD repayment. Our work aims to enhance SATD repayment prioritization and resource allocation, thereby improving software development and maintainability.

We present Shades-of-NULL, a benchmark for responsible missing value imputation. Our benchmark includes state-of-the-art imputation techniques, and embeds them into the machine learning development lifecycle. We model realistic missingness scenarios that go beyond Rubin's classic Missing Completely at Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR), to include multi-mechanism missingness (when different missingness patterns co-exist in the data) and missingness shift (when the missingness mechanism changes between training and test). Another key novelty of our work is that we evaluate imputers holistically, based on the predictive performance, fairness and stability of the models that are trained and tested on the data they produce. We use Shades-of-NULL to conduct a large-scale empirical study involving 20,952 experimental pipelines, and find that, while there is no single best-performing imputation approach for all missingness types, interesting performance patterns do emerge when comparing imputer performance in simpler vs. more complex missingness scenarios. Further, while predictive performance, fairness and stability can be seen as orthogonal, we identify trade-offs among them that arise due to the combination of missingness scenario, the choice of an imputer, and the architecture of the model trained on the data post-imputation. We make Shades-of-NULL publicly available, and hope to enable researchers to comprehensively and rigorously evaluate new missing value imputation methods on a wide range of evaluation metrics, in plausible and socially meaningful missingness scenarios.

The ability of large language models (LLMs) to interpret visual representations of data is crucial for advancing their application in data analysis and decision-making processes. This paper presents a novel synthetic dataset designed to evaluate the proficiency of LLMs in interpreting various forms of data visualizations, including plots like time series, histograms, violins, boxplots, and clusters. Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios. We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models like ChatGPT or Gemini, assessing their understanding and interpretative accuracy. To ensure data integrity, our benchmark dataset is generated automatically, making it entirely new and free from prior exposure to the models being tested. This strategy allows us to evaluate the models' ability to truly interpret and understand the data, eliminating possibility of pre-learned responses, and allowing for an unbiased evaluation of the models' capabilities. We also introduce quantitative metrics to assess the performance of the models, providing a robust and comprehensive evaluation tool. Benchmarking several state-of-the-art LLMs with this dataset reveals varying degrees of success, highlighting specific strengths and weaknesses in interpreting diverse types of visual data. The results provide valuable insights into the current capabilities of LLMs and identify key areas for improvement. This work establishes a foundational benchmark for future research and development aimed at enhancing the visual interpretative abilities of language models. In the future, improved LLMs with robust visual interpretation skills can significantly aid in automated data analysis, scientific research, educational tools, and business intelligence applications.

Astrophysical simulations are computation, memory, and thus energy intensive, thereby requiring new hardware advances for progress. Stony Brook University recently expanded its computing cluster "SeaWulf" with an addition of 94 new nodes featuring Intel Sapphire Rapids Xeon Max series CPUs. We present a performance and power efficiency study of this hardware performed with FLASH: a multi-scale, multi-physics, adaptive mesh-based software instrument. We extend this study to compare performance to that of Stony Brook's Ookami testbed which features ARM-based A64FX-700 processors, and SeaWulf's AMD EPYC Milan and Intel Skylake nodes. Our application is a stellar explosion known as a thermonuclear (Type Ia) supernova and for this 3D problem, FLASH includes operators for hydrodynamics, gravity, and nuclear burning, in addition to routines for the material equation of state. We perform a strong-scaling study with a 220 GB problem size to explore both single- and multi-node performance. Our study explores the performance of different MPI mappings and the distribution of processors across nodes. From these tests, we determined the optimal configuration to balance runtime and energy consumption for our application.

The ability to accurately interpret complex visual information is a crucial topic of multimodal large language models (MLLMs). Recent work indicates that enhanced visual perception significantly reduces hallucinations and improves performance on resolution-sensitive tasks, such as optical character recognition and document analysis. A number of recent MLLMs achieve this goal using a mixture of vision encoders. Despite their success, there is a lack of systematic comparisons and detailed ablation studies addressing critical aspects, such as expert selection and the integration of multiple vision experts. This study provides an extensive exploration of the design space for MLLMs using a mixture of vision encoders and resolutions. Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach. We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies. We additionally introduce Pre-Alignment to bridge the gap between vision-focused encoders and language tokens, enhancing model coherence. The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks. Models and code: //github.com/NVlabs/Eagle

Video diffusion models are able to generate high-quality videos by learning strong spatial-temporal priors on large-scale datasets. In this paper, we aim to investigate whether such priors derived from a generative process are suitable for video recognition, and eventually joint optimization of generation and recognition. Building upon Stable Video Diffusion, we introduce GenRec, the first unified framework trained with a random-frame conditioning process so as to learn generalized spatial-temporal representations. The resulting framework can naturally supports generation and recognition, and more importantly is robust even when visual inputs contain limited information. Extensive experiments demonstrate the efficacy of GenRec for both recognition and generation. In particular, GenRec achieves competitive recognition performance, offering 75.8% and 87.2% accuracy on SSV2 and K400, respectively. GenRec also performs the best class-conditioned image-to-video generation results, achieving 46.5 and 49.3 FVD scores on SSV2 and EK-100 datasets. Furthermore, GenRec demonstrates extraordinary robustness in scenarios that only limited frames can be observed.

The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.

北京阿比特科技有限公司