亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An effective unsupervised hashing algorithm leads to compact binary codes preserving the neighborhood structure of data as much as possible. One of the most established schemes for unsupervised hashing is to reduce the dimensionality of data and then find a rigid (neighbourhood-preserving) transformation that reduces the quantization error. Although employing rigid transformations is effective, we may not reduce quantization loss to the ultimate limits. As well, reducing dimensionality and quantization loss in two separate steps seems to be sub-optimal. Motivated by these shortcomings, we propose to employ both rigid and non-rigid transformations to reduce quantization error and dimensionality simultaneously. We relax the orthogonality constraint on the projection in a PCA-formulation and regularize this by a quantization term. We show that both the non-rigid projection matrix and rotation matrix contribute towards minimizing quantization loss but in different ways. A scalable nested coordinate descent approach is proposed to optimize this mixed-integer optimization problem. We evaluate the proposed method on five public benchmark datasets providing almost half a million images. Comparative results indicate that the proposed method mostly outperforms state-of-art linear methods and competes with end-to-end deep solutions.

相關內容

With the recent demand of deploying neural network models on mobile and edge devices, it is desired to improve the model's generalizability on unseen testing data, as well as enhance the model's robustness under fixed-point quantization for efficient deployment. Minimizing the training loss, however, provides few guarantees on the generalization and quantization performance. In this work, we fulfill the need of improving generalization and quantization performance simultaneously by theoretically unifying them under the framework of improving the model's robustness against bounded weight perturbation and minimizing the eigenvalues of the Hessian matrix with respect to model weights. We therefore propose HERO, a Hessian-enhanced robust optimization method, to minimize the Hessian eigenvalues through a gradient-based training process, simultaneously improving the generalization and quantization performance. HERO enables up to a 3.8% gain on test accuracy, up to 30% higher accuracy under 80% training label perturbation, and the best post-training quantization accuracy across a wide range of precision, including a >10% accuracy improvement over SGD-trained models for common model architectures on various datasets.

Clustering ensemble, or consensus clustering, has emerged as a powerful tool for improving both the robustness and the stability of results from individual clustering methods. Weighted clustering ensemble arises naturally from clustering ensemble. One of the arguments for weighted clustering ensemble is that elements (clusterings or clusters) in a clustering ensemble are of different quality, or that objects or features are of varying significance. However, it is not possible to directly apply the weighting mechanisms from classification (supervised) domain to clustering (unsupervised) domain, also because clustering is inherently an ill-posed problem. This paper provides an overview of weighted clustering ensemble by discussing different types of weights, major approaches to determining weight values, and applications of weighted clustering ensemble to complex data. The unifying framework presented in this paper will help clustering practitioners select the most appropriate weighting mechanisms for their own problems.

Dense Retrieval (DR) has achieved state-of-the-art first-stage ranking effectiveness. However, the efficiency of most existing DR models is limited by the large memory cost of storing dense vectors and the time-consuming nearest neighbor search (NNS) in vector space. Therefore, we present RepCONC, a novel retrieval model that learns discrete Representations via CONstrained Clustering. RepCONC jointly trains dual-encoders and the Product Quantization (PQ) method to learn discrete document representations and enables fast approximate NNS with compact indexes. It models quantization as a constrained clustering process, which requires the document embeddings to be uniformly clustered around the quantization centroids and supports end-to-end optimization of the quantization method and dual-encoders. We theoretically demonstrate the importance of the uniform clustering constraint in RepCONC and derive an efficient approximate solution for constrained clustering by reducing it to an instance of the optimal transport problem. Besides constrained clustering, RepCONC further adopts a vector-based inverted file system (IVF) to support highly efficient vector search on CPUs. Extensive experiments on two popular ad-hoc retrieval benchmarks show that RepCONC achieves better ranking effectiveness than competitive vector quantization baselines under different compression ratio settings. It also substantially outperforms a wide range of existing retrieval models in terms of retrieval effectiveness, memory efficiency, and time efficiency.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

Domain adaptive image retrieval includes single-domain retrieval and cross-domain retrieval. Most of the existing image retrieval methods only focus on single-domain retrieval, which assumes that the distributions of retrieval databases and queries are similar. However, in practical application, the discrepancies between retrieval databases often taken in ideal illumination/pose/background/camera conditions and queries usually obtained in uncontrolled conditions are very large. In this paper, considering the practical application, we focus on challenging cross-domain retrieval. To address the problem, we propose an effective method named Probability Weighted Compact Feature Learning (PWCF), which provides inter-domain correlation guidance to promote cross-domain retrieval accuracy and learns a series of compact binary codes to improve the retrieval speed. First, we derive our loss function through the Maximum A Posteriori Estimation (MAP): Bayesian Perspective (BP) induced focal-triplet loss, BP induced quantization loss and BP induced classification loss. Second, we propose a common manifold structure between domains to explore the potential correlation across domains. Considering the original feature representation is biased due to the inter-domain discrepancy, the manifold structure is difficult to be constructed. Therefore, we propose a new feature named Histogram Feature of Neighbors (HFON) from the sample statistics perspective. Extensive experiments on various benchmark databases validate that our method outperforms many state-of-the-art image retrieval methods for domain adaptive image retrieval. The source code is available at //github.com/fuxianghuang1/PWCF

Graph neural network (GNN) has shown superior performance in dealing with graphs, which has attracted considerable research attention recently. However, most of the existing GNN models are primarily designed for graphs in Euclidean spaces. Recent research has proven that the graph data exhibits non-Euclidean latent anatomy. Unfortunately, there was rarely study of GNN in non-Euclidean settings so far. To bridge this gap, in this paper, we study the GNN with attention mechanism in hyperbolic spaces at the first attempt. The research of hyperbolic GNN has some unique challenges: since the hyperbolic spaces are not vector spaces, the vector operations (e.g., vector addition, subtraction, and scalar multiplication) cannot be carried. To tackle this problem, we employ the gyrovector spaces, which provide an elegant algebraic formalism for hyperbolic geometry, to transform the features in a graph; and then we propose the hyperbolic proximity based attention mechanism to aggregate the features. Moreover, as mathematical operations in hyperbolic spaces could be more complicated than those in Euclidean spaces, we further devise a novel acceleration strategy using logarithmic and exponential mappings to improve the efficiency of our proposed model. The comprehensive experimental results on four real-world datasets demonstrate the performance of our proposed hyperbolic graph attention network model, by comparisons with other state-of-the-art baseline methods.

Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.

Kernel methods have produced state-of-the-art results for a number of NLP tasks such as relation extraction, but suffer from poor scalability due to the high cost of computing kernel similarities between discrete natural language structures. A recently proposed technique, kernelized locality-sensitive hashing (KLSH), can significantly reduce the computational cost, but is only applicable to classifiers operating on kNN graphs. Here we propose to use random subspaces of KLSH codes for efficiently constructing an explicit representation of NLP structures suitable for general classification methods. Further, we propose an approach for optimizing the KLSH model for classification problems by maximizing a variational lower bound on mutual information between the KLSH codes (feature vectors) and the class labels. We evaluate the proposed approach on biomedical relation extraction datasets, and observe significant and robust improvements in accuracy w.r.t. state-of-the-art classifiers, along with drastic (orders-of-magnitude) speedup compared to conventional kernel methods.

Learning compact binary codes for image retrieval problem using deep neural networks has attracted increasing attention recently. However, training deep hashing networks is challenging due to the binary constraints on the hash codes, the similarity preserving property, and the requirement for a vast amount of labelled images. To the best of our knowledge, none of the existing methods has tackled all of these challenges completely in a unified framework. In this work, we propose a novel end-to-end deep hashing approach, which is trained to produce binary codes directly from image pixels without the need of manual annotation. In particular, we propose a novel pairwise binary constrained loss function, which simultaneously encodes the distances between pairs of hash codes, and the binary quantization error. In order to train the network with the proposed loss function, we also propose an efficient parameter learning algorithm. In addition, to provide similar/dissimilar training images to train the network, we exploit 3D models reconstructed from unlabelled images for automatic generation of enormous similar/dissimilar pairs. Extensive experiments on three image retrieval benchmark datasets demonstrate the superior performance of the proposed method over the state-of-the-art hashing methods on the image retrieval problem.

Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Recently, many deep hashing methods have been proposed and shown largely improved performance over traditional feature-learning-based methods. Most of these methods examine the pairwise similarity on the semantic-level labels, where the pairwise similarity is generally defined in a hard-assignment way. That is, the pairwise similarity is '1' if they share no less than one class label and '0' if they do not share any. However, such similarity definition cannot reflect the similarity ranking for pairwise images that hold multiple labels. In this paper, a new deep hashing method is proposed for multi-label image retrieval by re-defining the pairwise similarity into an instance similarity, where the instance similarity is quantified into a percentage based on the normalized semantic labels. Based on the instance similarity, a weighted cross-entropy loss and a minimum mean square error loss are tailored for loss-function construction, and are efficiently used for simultaneous feature learning and hash coding. Experiments on three popular datasets demonstrate that, the proposed method outperforms the competing methods and achieves the state-of-the-art performance in multi-label image retrieval.

北京阿比特科技有限公司