亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing NTMs with contrastive learning suffer from the sample bias problem owing to the word frequency-based sampling strategy, which may result in false negative samples with similar semantics to the prototypes. In this paper, we aim to explore the efficient sampling strategy and contrastive learning in NTMs to address the aforementioned issue. We propose a new sampling assumption that negative samples should contain words that are semantically irrelevant to the prototype. Based on it, we propose the graph contrastive topic model (GCTM), which conducts graph contrastive learning (GCL) using informative positive and negative samples that are generated by the graph-based sampling strategy leveraging in-depth correlation and irrelevance among documents and words. In GCTM, we first model the input document as the document word bipartite graph (DWBG), and construct positive and negative word co-occurrence graphs (WCGs), encoded by graph neural networks, to express in-depth semantic correlation and irrelevance among words. Based on the DWBG and WCGs, we design the document-word information propagation (DWIP) process to perform the edge perturbation of DWBG, based on multi-hop correlations/irrelevance among documents and words. This yields the desired negative and positive samples, which will be utilized for GCL together with the prototypes to improve learning document topic representations and latent topics. We further show that GCL can be interpreted as the structured variational graph auto-encoder which maximizes the mutual information of latent topic representations of different perspectives on DWBG. Experiments on several benchmark datasets demonstrate the effectiveness of our method for topic coherence and document representation learning compared with existing SOTA methods.

相關內容

This paper introduces a novel approach to probabilistic deep learning, kernel density matrices, which provide a simpler yet effective mechanism for representing joint probability distributions of both continuous and discrete random variables. In quantum mechanics, a density matrix is the most general way to describe the state of a quantum system. This work extends the concept of density matrices by allowing them to be defined in a reproducing kernel Hilbert space. This abstraction allows the construction of differentiable models for density estimation, inference, and sampling, and enables their integration into end-to-end deep neural models. In doing so, we provide a versatile representation of marginal and joint probability distributions that allows us to develop a differentiable, compositional, and reversible inference procedure that covers a wide range of machine learning tasks, including density estimation, discriminative learning, and generative modeling. The broad applicability of the framework is illustrated by two examples: an image classification model that can be naturally transformed into a conditional generative model, and a model for learning with label proportions that demonstrates the framework's ability to deal with uncertainty in the training samples.

The rehearsal strategy is widely used to alleviate the catastrophic forgetting problem in class incremental learning (CIL) by preserving limited exemplars from previous tasks. With imbalanced sample numbers between old and new classes, the classifier learning can be biased. Existing CIL methods exploit the long-tailed (LT) recognition techniques, e.g., the adjusted losses and the data re-sampling methods, to handle the data imbalance issue within each increment task. In this work, the dynamic nature of data imbalance in CIL is shown and a novel Dynamic Residual Classifier (DRC) is proposed to handle this challenging scenario. Specifically, DRC is built upon a recent advance residual classifier with the branch layer merging to handle the model-growing problem. Moreover, DRC is compatible with different CIL pipelines and substantially improves them. Combining DRC with the model adaptation and fusion (MAF) pipeline, this method achieves state-of-the-art results on both the conventional CIL and the LT-CIL benchmarks. Extensive experiments are also conducted for a detailed analysis. The code is publicly available.

We study a class of reinforcement learning problems where the reward signals for policy learning are generated by an internal reward model that is dependent on and jointly optimized with the policy. This interdependence between the policy and the reward model leads to an unstable learning process because reward signals from an immature reward model are noisy and impede policy learning, and conversely, an under-optimized policy impedes reward estimation learning. We call this learning setting $\textit{Internally Rewarded Reinforcement Learning}$ (IRRL) as the reward is not provided directly by the environment but $\textit{internally}$ by a reward model. In this paper, we formally formulate IRRL and present a class of problems that belong to IRRL. We theoretically derive and empirically analyze the effect of the reward function in IRRL and based on these analyses propose the clipped linear reward function. Experimental results show that the proposed reward function can consistently stabilize the training process by reducing the impact of reward noise, which leads to faster convergence and higher performance compared with baselines in diverse tasks.

We propose TopDis (Topological Disentanglement), a method for learning disentangled representations via adding multi-scale topological loss term. Disentanglement is a crucial property of data representations substantial for the explainability and robustness of deep learning models and a step towards high-level cognition. The state-of-the-art method based on VAE minimizes the total correlation of the joint distribution of latent variables. We take a different perspective on disentanglement by analyzing topological properties of data manifolds. In particular, we optimize the topological similarity for data manifolds traversals. To the best of our knowledge, our paper is the first one to propose a differentiable topological loss for disentanglement. Our experiments have shown that the proposed topological loss improves disentanglement scores such as MIG, FactorVAE score, SAP score and DCI disentanglement score with respect to state-of-the-art results. Our method works in an unsupervised manner, permitting to apply it for problems without labeled factors of variation. Additionally, we show how to use the proposed topological loss to find disentangled directions in a trained GAN.

Given an array A[1: n] of n elements drawn from an ordered set, the sorted range selection problem is to build a data structure that can be used to answer the following type of queries efficiently: Given a pair of indices i, j $ (1\le i\le j \le n)$, and a positive integer k, report the k smallest elements from the sub-array A[i: j] in order. Brodal et al. (Brodal, G.S., Fagerberg, R., Greve, M., and L{\'o}pez-Ortiz, A., Online sorted range reporting. Algorithms and Computation (2009) pp. 173--182) introduced the problem and gave an optimal solution. After O(n log n) time for preprocessing, the query time is O(k). The space used is O(n). In this paper, we propose the only other possible optimal trade-off for the problem. We present a linear space solution to the problem that takes O(k log k) time to answer a range selection query. The preprocessing time is O(n). Moreover, the proposed algorithm reports the output elements one by one in non-decreasing order. Our solution is simple and practical.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司