亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many techniques in machine learning attempt explicitly or implicitly to infer a low-dimensional manifold structure of an underlying physical phenomenon from measurements without an explicit model of the phenomenon or the measurement apparatus. This paper presents a cautionary tale regarding the discrepancy between the geometry of measurements and the geometry of the underlying phenomenon in a benign setting. The deformation in the metric illustrated in this paper is mathematically straightforward and unavoidable in the general case, and it is only one of several similar effects. While this is not always problematic, we provide an example of an arguably standard and harmless data processing procedure where this effect leads to an incorrect answer to a seemingly simple question. Although we focus on manifold learning, these issues apply broadly to dimensionality reduction and unsupervised learning.

相關內容

流(liu)形(xing)學(xue)習,全稱流(liu)形(xing)學(xue)習方法(fa)(Manifold Learning),自2000年在(zai)著(zhu)名的(de)(de)(de)科(ke)學(xue)雜志《Science》被首次提出以來,已(yi)成為(wei)信(xin)息科(ke)學(xue)領域(yu)的(de)(de)(de)研究熱點。在(zai)理論和應(ying)用上,流(liu)形(xing)學(xue)習方法(fa)都具有重要的(de)(de)(de)研究意(yi)義。假設數(shu)據是(shi)均勻采樣(yang)于一個高(gao)維(wei)歐氏空間(jian)中的(de)(de)(de)低(di)維(wei)流(liu)形(xing),流(liu)形(xing)學(xue)習就是(shi)從高(gao)維(wei)采樣(yang)數(shu)據中恢復低(di)維(wei)流(liu)形(xing)結構,即找到(dao)高(gao)維(wei)空間(jian)中的(de)(de)(de)低(di)維(wei)流(liu)形(xing),并求出相應(ying)的(de)(de)(de)嵌(qian)入映射,以實現維(wei)數(shu)約(yue)簡或(huo)者(zhe)數(shu)據可(ke)視(shi)化。它是(shi)從觀測到(dao)的(de)(de)(de)現象中去尋找事物的(de)(de)(de)本(ben)質,找到(dao)產生(sheng)數(shu)據的(de)(de)(de)內(nei)在(zai)規律。

The rapid growth of deep learning (DL) has spurred interest in enhancing log-based anomaly detection. This approach aims to extract meaning from log events (log message templates) and develop advanced DL models for anomaly detection. However, these DL methods face challenges like heavy reliance on training data, labels, and computational resources due to model complexity. In contrast, traditional machine learning and data mining techniques are less data-dependent and more efficient but less effective than DL. To make log-based anomaly detection more practical, the goal is to enhance traditional techniques to match DL's effectiveness. Previous research in a different domain (linking questions on Stack Overflow) suggests that optimized traditional techniques can rival state-of-the-art DL methods. Drawing inspiration from this concept, we conducted an empirical study. We optimized the unsupervised PCA (Principal Component Analysis), a traditional technique, by incorporating lightweight semantic-based log representation. This addresses the issue of unseen log events in training data, enhancing log representation. Our study compared seven log-based anomaly detection methods, including four DL-based, two traditional, and the optimized PCA technique, using public and industrial datasets. Results indicate that the optimized unsupervised PCA technique achieves similar effectiveness to advanced supervised/semi-supervised DL methods while being more stable with limited training data and resource-efficient. This demonstrates the adaptability and strength of traditional techniques through small yet impactful adaptations.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司