Secure multiparty computation (MPC) on incomplete communication networks has been studied within two primary models: (1) Where a partial network is fixed a priori, and thus corruptions can occur dependent on its structure, and (2) Where edges in the communication graph are determined dynamically as part of the protocol. Whereas a rich literature has succeeded in mapping out the feasibility and limitations of graph structures supporting secure computation in the fixed-graph model (including strong classical lower bounds), these bounds do not apply in the latter dynamic-graph setting, which has recently seen exciting new results, but remains relatively unexplored. In this work, we initiate a similar foundational study of MPC within the dynamic-graph model. As a first step, we investigate the property of graph expansion. All existing protocols (implicitly or explicitly) yield communication graphs which are expanders, but it is not clear whether this is inherent. Our results consist of two types (for constant fraction of corruptions): * Upper bounds: We demonstrate secure protocols whose induced communication graphs are not expander graphs, within a wide range of settings (computational, information theoretic, with low locality, even with low locality and adaptive security), each assuming some form of input-independent setup. * Lower bounds: In the plain model (no setup) with adaptive corruptions, we demonstrate that for certain functionalities, no protocol can maintain a non-expanding communication graph against all adversarial strategies. Our lower bound relies only on protocol correctness (not privacy), and requires a surprisingly delicate argument. More generally, we provide a formal framework for analyzing the evolving communication graph of MPC protocols, giving a starting point for studying the relation between secure computation and further, more general graph properties.
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks ranging from delivery to smart city surveillance. Reaping these benefits requires CAVs to autonomously navigate to target destinations. To this end, each CAV's navigation controller must leverage the information collected by sensors and wireless systems for decision-making on longitudinal and lateral movements. However, enabling autonomous navigation for CAVs requires a convergent integration of communication, control, and learning systems. The goal of this article is to explicitly expose the challenges related to this convergence and propose solutions to address them in two major use cases: Uncoordinated and coordinated CAVs. In particular, challenges related to the navigation of uncoordinated CAVs include stable path tracking, robust control against cyber-physical attacks, and adaptive navigation controller design. Meanwhile, when multiple CAVs coordinate their movements during navigation, fundamental problems such as stable formation, fast collaborative learning, and distributed intrusion detection are analyzed. For both cases, solutions using the convergence of communication theory, control theory, and machine learning are proposed to enable effective and secure CAV navigation. Preliminary simulation results are provided to show the merits of proposed solutions.
We present an exponentially convergent numerical method to approximate the solution of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded operator coefficient and Caputo fractional derivative in time. The numerical method is based on the newly obtained solution formula that consolidates the mild solution representations of sub-parabolic, parabolic and sub-hyperbolic equations with sectorial operator coefficient $A$ and non-zero initial data. The involved integral operators are approximated using the sinc-quadrature formulas that are tailored to the spectral parameters of $A$, fractional order $\alpha$ and the smoothness of the first initial condition, as well as to the properties of the equation's right-hand side $f(t)$. The resulting method possesses exponential convergence for positive sectorial $A$, any finite $t$, including $t = 0$ and the whole range $\alpha \in (0,2)$. It is suitable for a practically important case, when no knowledge of $f(t)$ is available outside the considered interval $t \in [0, T]$. The algorithm of the method is capable of multi-level parallelism. We provide numerical examples that confirm the theoretical error estimates.
To improve the convergence property of the randomized Kaczmarz (RK) method for solving linear systems, Bai and Wu (SIAM J. Sci. Comput., 40(1):A592--A606, 2018) originally introduced a greedy probability criterion for effectively selecting the working row from the coefficient matrix and constructed the greedy randomized Kaczmarz (GRK) method. Due to its simplicity and efficiency, this approach has inspired numerous subsequent works in recent years, such as the capped adaptive sampling rule, the greedy augmented randomized Kaczmarz method, and the greedy randomized coordinate descent method. Since the iterates of the GRK method are actually random variables, existing convergence analyses are all related to the expectation of the error. In this note, we prove that the linear convergence rate of the GRK method is deterministic, i.e. not in the sense of expectation. Moreover, the Polyak's heavy ball momentum technique is incorporated to improve the performance of the GRK method. We propose a refined convergence analysis, compared with the technique used in Loizou and Richt\'{a}rik (Comput. Optim. Appl., 77(3):653--710, 2020), of momentum variants of randomized iterative methods, which shows that the proposed GRK method with momentum (mGRK) also enjoys a deterministic linear convergence. Numerical experiments show that the mGRK method is more efficient than the GRK method.
Localizing mobile robotic nodes in indoor and GPS-denied environments is a complex problem, particularly in dynamic, unstructured scenarios where traditional cameras and LIDAR-based sensing and localization modalities may fail. Alternatively, wireless signal-based localization has been extensively studied in the literature yet primarily focuses on fingerprinting and feature-matching paradigms, requiring dedicated environment-specific offline data collection. We propose an online robot localization algorithm enabled by collaborative wireless sensor nodes to remedy these limitations. Our approach's core novelty lies in obtaining the Collaborative Direction of Arrival (CDOA) of wireless signals by exploiting the geometric features and collaboration between wireless nodes. The CDOA is combined with the Expectation Maximization (EM) and Particle Filter (PF) algorithms to calculate the Gaussian probability of the node's location with high efficiency and accuracy. The algorithm relies on RSSI-only data, making it ubiquitous to resource-constrained devices. We theoretically analyze the approach and extensively validate the proposed method's consistency, accuracy, and computational efficiency in simulations, real-world public datasets, as well as real robot demonstrations. The results validate the method's real-time computational capability and demonstrate considerably-high centimeter-level localization accuracy, outperforming relevant state-of-the-art localization approaches.
Since Jacobson [FOCS89] initiated the investigation of succinct graph encodings 35 years ago, there has been a long list of results on balancing the generality of the class, the speed, the succinctness of the encoding, and the query support. Let Cn denote the set consisting of the graphs in a class C that with at most n vertices. A class C is nontrivial if the information-theoretically min number log |Cn| of bits to distinguish the members of Cn is Omega(n). An encoding scheme based upon a single class C is C-opt if it takes a graph G of Cn and produces in deterministic O(n) time an encoded string of at most log |Cn| + o(log |Cn|) bits from which G can be recovered in O(n) time. Despite the extensive efforts in the literature, trees and general graphs were the only nontrivial classes C admitting C-opt encoding schemes that support the degree query in O(1) time. Basing an encoding scheme upon a single class ignores the possibility of a shorter encoded string using additional properties of the graph input. To leverage the inherent structures of individual graphs, we propose to base an encoding scheme upon of multiple classes: An encoding scheme based upon a family F of classes, accepting all graphs in UF, is F-opt if it is C-opt for each C in F. Having a C-opt encoding scheme for each C in F does not guarantee an F-opt encoding scheme. Under this more stringent criterion, we present an F-opt encoding scheme for a family F of an infinite number of classes such that UF comprises all graphs of bounded Hadwiger numbers. F consists of the nontrivial quasi-monotone classes of k-clique-minor-free graphs for each positive integer k. Our F-opt scheme supports queries of degree, adjacency, neighbor-listing, and bounded-distance shortest path in O(1) time per output. We broaden the graph classes admitting opt encoding schemes that also efficiently support fundamental queries.
The theory of rapid mixing random walks plays a fundamental role in the study of modern randomised algorithms. Usually, the mixing time is measured with respect to the worst initial position. It is well known that the presence of bottlenecks in a graph hampers mixing and, in particular, starting inside a small bottleneck significantly slows down the diffusion of the walk in the first steps of the process. To circumvent this problem, the average mixing time is defined to be the mixing time starting at a uniformly random vertex. In this paper we provide a general framework to show logarithmic average mixing time for random walks on graphs with small bottlenecks. The framework is especially effective on certain families of random graphs with heterogeneous properties. We demonstrate its applicability on two random models for which the mixing time was known to be of order $\log^2n$, speeding up the mixing to order $\log n$. First, in the context of smoothed analysis on connected graphs, we show logarithmic average mixing time for randomly perturbed graphs of bounded degeneracy. A particular instance is the Newman-Watts small-world model. Second, we show logarithmic average mixing time for supercritically percolated expander graphs. When the host graph is complete, this application gives an alternative proof that the average mixing time of the giant component in the supercritical Erd\H{o}s-R\'enyi graph is logarithmic.
Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.