亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobile robots equipped with multiple light detection and ranging (LiDARs) and capable of recognizing their surroundings are increasing due to the minitualization and cost reduction of LiDAR. This paper proposes a target-less extrinsic calibration method of multiple LiDARs with non-overlapping field of view (FoV). The proposed method uses accumulated point clouds of floor plane and objects while in motion. It enables accurate calibration with challenging configuration of LiDARs that directed towards the floor plane, caused by biased feature values. Additionally, the method includes a noise removal module that considers the scanning pattern to address bleeding points, which are noises of significant source of error in point cloud alignment using high-density LiDARs. Evaluations through simulation demonstrate that the proposed method achieved higher accuracy extrinsic calibration with two and four LiDARs than conventional methods, regardless type of objects. Furthermore, the experiments using a real mobile robot has shown that our proposed noise removal module can eliminate noise more precisely than conventional methods, and the estimated extrinsic parameters have successfully created consistent 3D maps.

相關內容

Trajectory prediction is a cornerstone in autonomous driving (AD), playing a critical role in enabling vehicles to navigate safely and efficiently in dynamic environments. To address this task, this paper presents a novel trajectory prediction model tailored for accuracy in the face of heterogeneous and uncertain traffic scenarios. At the heart of this model lies the Characterized Diffusion Module, an innovative module designed to simulate traffic scenarios with inherent uncertainty. This module enriches the predictive process by infusing it with detailed semantic information, thereby enhancing trajectory prediction accuracy. Complementing this, our Spatio-Temporal (ST) Interaction Module captures the nuanced effects of traffic scenarios on vehicle dynamics across both spatial and temporal dimensions with remarkable effectiveness. Demonstrated through exhaustive evaluations, our model sets a new standard in trajectory prediction, achieving state-of-the-art (SOTA) results on the Next Generation Simulation (NGSIM), Highway Drone (HighD), and Macao Connected Autonomous Driving (MoCAD) datasets across both short and extended temporal spans. This performance underscores the model's unparalleled adaptability and efficacy in navigating complex traffic scenarios, including highways, urban streets, and intersections.

Autonomous locomotion for mobile ground robots in unstructured environments such as waypoint navigation or flipper control requires a sufficiently accurate prediction of the robot-terrain interaction. Heuristics like occupancy grids or traversability maps are widely used but limit actions available to robots with active flippers as joint positions are not taken into account. We present a novel iterative geometric method to predict the 3D pose of mobile ground robots with active flippers on uneven ground with high accuracy and online planning capabilities. This is achieved by utilizing the ability of signed distance fields to represent surfaces with sub-voxel accuracy. The effectiveness of the presented approach is demonstrated on two different tracked robots in simulation and on a real platform. Compared to a tracking system as ground truth, our method predicts the robot position and orientation with an average accuracy of 3.11 cm and 3.91{\deg}, outperforming a recent heightmap-based approach. The implementation is made available as an open-source ROS package.

The increasing demand for underwater vehicles highlights the necessity for robust localization solutions in inspection missions. In this work, we present a novel real-time sonar-based underwater global positioning algorithm for AUVs (Autonomous Underwater Vehicles) designed for environments with a sparse distribution of human-made assets. Our approach exploits two synergistic data interpretation frontends applied to the same stream of sonar data acquired by a multibeam Forward-Looking Sonar (FSD). These observations are fused within a Particle Filter (PF) either to weigh more particles that belong to high-likelihood regions or to solve symmetric ambiguities. Preliminary experiments carried out on a simulated environment resembling a real underwater plant provided promising results. This work represents a starting point towards future developments of the method and consequent exhaustive evaluations also in real-world scenarios.

The increased deployment of multi-robot systems (MRS) in various fields has led to the need for analysis of system-level performance. However, creating consistent metrics for MRS is challenging due to the wide range of system and environmental factors, such as team size and environment size. This paper presents a new analytical framework for MRS based on dimensionless variable analysis, a mathematical technique typically used to simplify complex physical systems. This approach effectively condenses the complex parameters influencing MRS performance into a manageable set of dimensionless variables. We form dimensionless variables which encapsulate key parameters of the robot team and task. Then we use these dimensionless variables to fit a parametric model of team performance. Our model successfully identifies critical performance determinants and their interdependencies, providing insight for MRS design and optimization. The application of dimensionless variable analysis to MRS offers a promising method for MRS analysis that effectively reduces complexity, enhances comprehension of system behaviors, and informs the design and management of future MRS deployments.

Initial alignment is one of the key technologies in strapdown inertial navigation system (SINS) to provide initial state information for vehicle attitude and navigation. For some situations, such as the attitude heading reference system, the position is not necessarily required or even available, then the self-alignment that does not rely on any external aid becomes very necessary. This study presents a new self-alignment method under swaying conditions, which can determine the latitude and attitude simultaneously by utilizing all observation vectors without solving the Wahba problem, and it is different from the existing methods. By constructing the dyadic tensor of each observation and reference vector itself, all equations related to observation and reference vectors are accumulated into one equation, where the latitude variable is extracted and solved according to the same eigenvalues of similar matrices on both sides of the equation, meanwhile the attitude is obtained by eigenvalue decomposition. Simulation and experiment tests verify the effectiveness of the proposed methods, and the alignment result is better than TRIAD in convergence speed and stability and comparable with OBA method in alignment accuracy with or without latitude. It is useful for guiding the design of initial alignment in autonomous vehicle applications.

We explore how high-speed robot arm motions can dynamically manipulate cables to vault over obstacles, knock objects from pedestals, and weave between obstacles. In this paper, we propose a self-supervised learning framework that enables a UR5 robot to perform these three tasks. The framework finds a 3D apex point for the robot arm, which, together with a task-specific trajectory function, defines an arcing motion that dynamically manipulates the cable to perform tasks with varying obstacle and target locations. The trajectory function computes minimum-jerk motions that are constrained to remain within joint limits and to travel through the 3D apex point by repeatedly solving quadratic programs to find the shortest and fastest feasible motion. We experiment with 5 physical cables with different thickness and mass and compare performance against two baselines in which a human chooses the apex point. Results suggest that a baseline with a fixed apex across the three tasks achieves respective success rates of 51.7%, 36.7%, and 15.0%, and a baseline with human-specified, task-specific apex points achieves 66.7%, 56.7%, and 15.0% success rate respectively, while the robot using the learned apex point can achieve success rates of 81.7% in vaulting, 65.0% in knocking, and 60.0% in weaving. Code, data, and supplementary materials are available at https: //sites.google.com/berkeley.edu/dynrope/home.

We design and analyse an energy stable, structure preserving, well-balanced and asymptotic preserving (AP) scheme for the barotropic Euler system with gravity in the anelastic limit. The key to energy stability is the introduction of appropriate velocity shifts in the convective fluxes of mass and momenta. The semi-implicit in time and finite volume in space fully-discrete scheme supports the positivity of density and yields the consistency with the weak solutions of the Euler system upon mesh refinement. The numerical scheme admits the discrete hydrostatic states as solutions and the stability of numerical solutions in terms of the relative energy leads to well-balancing. The AP property of the scheme, i.e. the boundedness of the mesh parameters with respect to the Mach/Froude numbers and the scheme's asymptotic consistency with the anelastic Euler system is rigorously shown on the basis of apriori energy estimates. The numerical scheme is resolved in two steps: by solving a non-linear elliptic problem for the density and a subsequent explicit computation of the velocity. Results from several benchmark case studies are presented to corroborate the proposed claims.

Graph-based collaborative filtering (CF) has emerged as a promising approach in recommendation systems. Despite its achievements, graph-based CF models face challenges due to data sparsity and negative sampling. In this paper, we propose a novel Stochastic sampling for i) COntrastive views and ii) hard NEgative samples (SCONE) to overcome these issues. By considering that they are both sampling tasks, we generate dynamic augmented views and diverse hard negative samples via our unified stochastic sampling framework based on score-based generative models. In our comprehensive evaluations with 6 benchmark datasets, our proposed SCONE significantly improves recommendation accuracy and robustness, and demonstrates the superiority of our approach over existing CF models. Furthermore, we prove the efficacy of user-item specific stochastic sampling for addressing the user sparsity and item popularity issues. The integration of the stochastic sampling and graph-based CF obtains the state-of-the-art in personalized recommendation systems, making significant strides in information-rich environments.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司