亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recognizing the activities causing distraction in real-world driving scenarios is critical for ensuring the safety and reliability of both drivers and pedestrians on the roadways. Conventional computer vision techniques are typically data-intensive and require a large volume of annotated training data to detect and classify various distracted driving behaviors, thereby limiting their efficiency and scalability. We aim to develop a generalized framework that showcases robust performance with access to limited or no annotated training data. Recently, vision-language models have offered large-scale visual-textual pretraining that can be adapted to task-specific learning like distracted driving activity recognition. Vision-language pretraining models, such as CLIP, have shown significant promise in learning natural language-guided visual representations. This paper proposes a CLIP-based driver activity recognition approach that identifies driver distraction from naturalistic driving images and videos. CLIP's vision embedding offers zero-shot transfer and task-based finetuning, which can classify distracted activities from driving video data. Our results show that this framework offers state-of-the-art performance on zero-shot transfer and video-based CLIP for predicting the driver's state on two public datasets. We propose both frame-based and video-based frameworks developed on top of the CLIP's visual representation for distracted driving detection and classification tasks and report the results.

相關內容

A growing number of safety-critical industries agree that building confidence in complex systems can be achieved through evidence and structured argumentation framed in assurance cases. Nevertheless, assurance cases can easily become too rigorous and difficult to develop and maintain when applied to complex systems. Therefore, we propose to use contract-based development (CBD), a method to manage complexity originally developed in computer science, to simplify assurance cases by modularizing them. This paper will not only summarize relevant previous work such as constructing consistent modular assurance cases using CBD, but more importantly also propose a novel approach to integrate CBD with the argumentation in assurance case modules. This approach will allow interdisciplinary subject-matter and domain experts to build assurance cases together without even knowing about CBD. This helps subject matter experts outside of computer science to reap benefits from CBD and helps with interdisciplinary co-development of assurance cases that cover all the required fields. This paper motivates four rules of thumb aimed to help practitioners developing high-quality modular assurance cases. It also explains how modularization of assurance is an enabler for multi-concern assurance that accounts for the inter-dependency of different concerns such as safety, security and performance.

We study automated security response for an IT infrastructure and formulate the interaction between an attacker and a defender as a partially observed, non-stationary game. We relax the standard assumption that the game model is correctly specified and consider that each player has a probabilistic conjecture about the model, which may be misspecified in the sense that the true model has probability 0. This formulation allows us to capture uncertainty about the infrastructure and the intents of the players. To learn effective game strategies online, we design a novel method where a player iteratively adapts its conjecture using Bayesian learning and updates its strategy through rollout. We prove that the conjectures converge to best fits, and we provide a bound on the performance improvement that rollout enables with a conjectured model. To characterize the steady state of the game, we propose a variant of the Berk-Nash equilibrium. We present our method through an advanced persistent threat use case. Simulation studies based on testbed measurements show that our method produces effective security strategies that adapt to a changing environment. We also find that our method enables faster convergence than current reinforcement learning techniques.

Being able to assess the confidence of individual predictions in machine learning models is crucial for decision making scenarios. Specially, in critical applications such as medical diagnosis, security, and unmanned vehicles, to name a few. In the last years, complex predictive models have had great success in solving hard tasks and new methods are being proposed every day. While the majority of new developments in machine learning models focus on improving the overall performance, less effort is put on assessing the trustworthiness of individual predictions, and even to a lesser extent, in the context of sensor fusion. To this end, we build and test multi-view and single-view conformal models for heterogeneous sensor fusion. Our models provide theoretical marginal confidence guarantees since they are based on the conformal prediction framework. We also propose a multi-view semi-conformal model based on sets intersection. Through comprehensive experimentation, we show that multi-view models perform better than single-view models not only in terms of accuracy-based performance metrics (as it has already been shown in several previous works) but also in conformal measures that provide uncertainty estimation. Our results also showed that multi-view models generate prediction sets with less uncertainty compared to single-view models.

Collaborative state estimation using different heterogeneous sensors is a fundamental prerequisite for robotic swarms operating in GPS-denied environments, posing a significant research challenge. In this paper, we introduce a centralized system to facilitate collaborative LiDAR-ranging-inertial state estimation, enabling robotic swarms to operate without the need for anchor deployment. The system efficiently distributes computationally intensive tasks to a central server, thereby reducing the computational burden on individual robots for local odometry calculations. The server back-end establishes a global reference by leveraging shared data and refining joint pose graph optimization through place recognition, global optimization techniques, and removal of outlier data to ensure precise and robust collaborative state estimation. Extensive evaluations of our system, utilizing both publicly available datasets and our custom datasets, demonstrate significant enhancements in the accuracy of collaborative SLAM estimates. Moreover, our system exhibits remarkable proficiency in large-scale missions, seamlessly enabling ten robots to collaborate effectively in performing SLAM tasks. In order to contribute to the research community, we will make our code open-source and accessible at \url{//github.com/PengYu-team/Co-LRIO}.

Modern robotic systems are required to operate in challenging environments, which demand reliable localization under challenging conditions. LiDAR-based localization methods, such as the Iterative Closest Point (ICP) algorithm, can suffer in geometrically uninformative environments that are known to deteriorate point cloud registration performance and push optimization toward divergence along weakly constrained directions. To overcome this issue, this work proposes i) a robust fine-grained localizability detection module, and ii) a localizability-aware constrained ICP optimization module, which couples with the localizability detection module in a unified manner. The proposed localizability detection is achieved by utilizing the correspondences between the scan and the map to analyze the alignment strength against the principal directions of the optimization as part of its fine-grained LiDAR localizability analysis. In the second part, this localizability analysis is then integrated into the scan-to-map point cloud registration to generate drift-free pose updates by enforcing controlled updates or leaving the degenerate directions of the optimization unchanged. The proposed method is thoroughly evaluated and compared to state-of-the-art methods in simulated and real-world experiments, demonstrating the performance and reliability improvement in LiDAR-challenging environments. In all experiments, the proposed framework demonstrates accurate and generalizable localizability detection and robust pose estimation without environment-specific parameter tuning.

Enforcing safety while preventing overly conservative behaviors is essential for autonomous vehicles to achieve high task performance. In this paper, we propose a barrier-enhanced homotopic parallel trajectory optimization (BHPTO) approach with over-relaxed alternating direction method of multipliers (ADMM) for real-time integrated decision-making and planning. To facilitate safety interactions between the ego vehicle (EV) and surrounding vehicles, a spatiotemporal safety module exhibiting bi-convexity is developed on the basis of barrier function. Varying barrier coefficients are adopted for different time steps in a planning horizon to account for the motion uncertainties of surrounding HVs and mitigate conservative behaviors. Additionally, we exploit the discrete characteristics of driving maneuvers to initialize nominal behavior-oriented free-end homotopic trajectories based on reachability analysis, and each trajectory is locally constrained to a specific driving maneuver while sharing the same task objectives. By leveraging the bi-convexity of the safety module and the kinematics of the EV, we formulate the BHPTO as a bi-convex optimization problem. Then constraint transcription and over-relaxed ADMM are employed to streamline the optimization process, such that multiple trajectories are generated in real time with feasibility guarantees. Through a series of experiments, the proposed development demonstrates improved task accuracy, stability, and consistency in various traffic scenarios using synthetic and real-world traffic datasets.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司