In this paper, we propose mathematical models for reconstructing the optical flow in time-harmonic elastography. In this image acquisition technique, the object undergoes a special time-harmonic oscillation with known frequency so that only the spatially varying amplitude of the velocity field has to be determined. This allows for a simpler multi-frame optical flow analysis using Fourier analytic tools in time. We propose three variational optical flow models and show how their minimization can be tackled via Fourier transform in time. Numerical examples with synthetic as well as real-world data demonstrate the benefits of our approach. Keywords: optical flow, elastography, Fourier transform, iteratively reweighted least squares, Horn--Schunck method
Simplicial sets generalize many categories of graphs. In this paper, we give a complete characterization of the Lawvere-Tierney topologies on (semi-)simplicial sets, on bicolored graphs, and on fuzzy sets. We apply our results to establish that 'partially simple' simplicial sets and 'partially simple' graphs form quasitoposes.
In this paper, we compare general-purpose pretrained models, GPT-4-Turbo and Llama-3-8b-Instruct with special-purpose models fine-tuned on specific tasks, XLM-Roberta-large, mT5-large, and Llama-3-8b-Instruct. We focus on seven classification and six generation tasks to evaluate the performance of these models on Urdu language. Urdu has 70 million native speakers, yet it remains underrepresented in Natural Language Processing (NLP). Despite the frequent advancements in Large Language Models (LLMs), their performance in low-resource languages, including Urdu, still needs to be explored. We also conduct a human evaluation for the generation tasks and compare the results with the evaluations performed by GPT-4-Turbo and Llama-3-8b-Instruct. We find that special-purpose models consistently outperform general-purpose models across various tasks. We also find that the evaluation done by GPT-4-Turbo for generation tasks aligns more closely with human evaluation compared to the evaluation by Llama-3-8b-Instruct. This paper contributes to the NLP community by providing insights into the effectiveness of general and specific-purpose LLMs for low-resource languages.
With the advent of large models based on the Transformer architecture, researchers have observed an anomalous phenomenon in the Attention mechanism--there is a very high attention on the first element, which is prevalent across Transformer-based models. It is crucial to understand it for the development of techniques focusing on attention distribution, such as Key-Value (KV) Cache compression and infinite extrapolation; however, the latent cause leaves to be unknown. In this paper, we analyze such a phenomenon from the perspective of waiver phenomenon, which involves reducing the internal values of certain elements in the sequence, allowing them to absorb excess attention without affecting their contribution to information. In specific models, due to differences in positional encoding and attention patterns, we have found that the selection of waiver elements by the model can be categorized into two methods: positional-encoding-based and feature-distribution-within-elements-based.
In this paper, the problem of minimum rate maximization for probabilistic semantic communication (PSCom) in industrial Internet of Things (IIoT) is investigated. In the considered model, users employ semantic information extraction techniques to compress the original data before sending it to the base station (BS). During this semantic compression process, knowledge graphs are employed to represent the semantic information, and the probability graph sharing between users and the BS is utilized to further compress the knowledge graph. The semantic compression process can significantly reduce the transmitted data size, but it inevitably introduces additional computation overhead. Considering the limited power budget of the user, we formulate a joint communication and computation optimization problem is formulated aiming to maximize the minimum equivalent rate among all users while meeting total power and semantic compression ratio constraints. To address this problem, two algorithms with different computational complexities are proposed to obtain suboptimal solutions. One algorithm is based on a prorate distribution of transmission power, while the other traverses the combinations of semantic compression ratios among all users. In both algorithms, bisection is employed in order to achieve the greatest minimum equivalent rate. The simulation results validate the effectiveness of the proposed algorithms.
With the emergence of the Software 3.0 era, there is a growing trend of compressing and integrating large models into software systems, with significant societal implications. Regrettably, in numerous instances, model compression techniques impact the fairness performance of these models and thus the ethical behavior of DNN-powered software. One of the most notable example is the Lottery Ticket Hypothesis (LTH), a prevailing model pruning approach. This paper demonstrates that fairness issue of LTHbased pruning arises from both its subnetwork selection and training procedures, highlighting the inadequacy of existing remedies. To address this, we propose a novel pruning framework, Ballot, which employs a novel conflict-detection-based subnetwork selection to find accurate and fair subnetworks, coupled with a refined training process to attain a high-performance model, thereby improving the fairness of DNN-powered software. By means of this procedure, Ballot improves the fairness of pruning by 38.00%, 33.91%, 17.96%, and 35.82% compared to state-of-the-art baselines, namely Magnitude Pruning, Standard LTH, SafeCompress, and FairScratch respectively, based on our evaluation of five popular datasets and three widely used models. Our code is available at //anonymous.4open.science/r/Ballot-506E.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum
In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.