亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Statistical quality control methods are noteworthy to producing standard production in manufacturing processes. In this regard, there are many classical manners to control the process. Many of them have a global assumption around the distributions of the process data. They are supposed to be Normal, but it is clear that it is not always valid for all processes. Such control charts made some wrong decisions that waste funds. So, the main question while working with multivariate data set is how to find the multivariate distribution of the data set, which saves the original dependency between variables. To our knowledge, a copula function guarantees dependence on the result function. It is not enough when there is no other fundamental information about the statistical society, and we have just a data set. Therefore, we apply the maximum entropy concept to deal with this situation. In this paper, first of all, we get the joint distribution of a data set from a manufacturing process that needs to be in-control while running the production process. Then, we get an elliptical control limit via the maximum copula entropy. Finally, we represent a practical example using the method. Average run lengths are calculated for some means and shifts to show the ability of the maximum copula entropy. In the end, two practical data examples are presented, and the results of our method are compared with the traditional way based on Fisher distribution.

相關內容

Contention resolution schemes (or CR schemes), introduced by Chekuri, Vondrak and Zenklusen, are a class of randomized rounding algorithms for converting a fractional solution to a relaxation for a down-closed constraint family into an integer solution. A CR scheme takes a fractional point $x$ in a relaxation polytope, rounds each coordinate $x_i$ independently to get a possibly non-feasible set, and then drops some elements in order to satisfy the constraints. Intuitively, a contention resolution scheme is $c$-balanced if every element $i$ is selected with probability at least $c \cdot x_i$. It is known that general matroids admit a $(1-1/e)$-balanced CR scheme, and that this is (asymptotically) optimal. This is in particular true for the special case of uniform matroids of rank one. In this work, we provide a simple and explicit monotone CR scheme for uniform matroids of rank $k$ on $n$ elements with a balancedness of $1 - \binom{n}{k}\:\left(1-\frac{k}{n}\right)^{n+1-k}\:\left(\frac{k}{n}\right)^k$, and show that this is optimal. As $n$ grows, this expression converges from above to $1 - e^{-k}k^k/k!$. While this asymptotic bound can be obtained by combining previously known results, these require defining an exponential-sized linear program, as well as using random sampling and the ellipsoid algorithm. Our procedure, on the other hand, has the advantage of being simple and explicit. This scheme extends naturally into an optimal CR scheme for partition matroids.

In this article, we propose a one-sample test to check whether the support of the unknown distribution generating the data is homologically equivalent to the support of some specified distribution or not OR using the corresponding two-sample test, one can test whether the supports of two unknown distributions are homologically equivalent or not. In the course of this study, test statistics based on the Betti numbers are formulated, and the consistency of the tests is established under the critical and the supercritical regimes. Moreover, some simulation studies are conducted and results are compared with the existing methodologies such as Robinson's permutation test and test based on mean persistent landscape functions. Furthermore, the practicability of the tests is shown on two well-known real data sets also.

We propose and study a novel mechanism design setup where each bidder holds two kinds of private information: (1) type variable, which can be misreported; (2) information variable, which the bidder may want to conceal or partially reveal, but importantly, not to misreport. We refer to bidders with such behaviors as strategically reticent bidders. Among others, one direct motivation of our model is the ad auction in which many ad platforms today elicit from each bidder not only their private value per conversion but also their private information about Internet users (e.g., user activities on the advertiser's websites) in order to improve the platform's estimation of conversion rates. We show that in this new setup, it is still possible to design mechanisms that are both Incentive and Information Compatible (IIC). We develop two different black-box transformations, which convert any mechanism $\mathcal{M}$ for classic bidders to a mechanism $\bar{\mathcal{M}}$ for strategically reticent bidders, based on either outcome of expectation or expectation of outcome, respectively. We identify properties of the original mechanism $\mathcal{M}$ under which the transformation leads to IIC mechanisms $\bar{\mathcal{M}}$. Interestingly, as corollaries of these results, we show that running VCG with bidders' expected values maximizes welfare, whereas the mechanism using expected outcome of Myerson's auction maximizes revenue. Finally, we study how regulation on the auctioneer's usage of information can lead to more robust mechanisms.

The modeling and identification of time series data with a long memory are important in various fields. The streamflow discharge is one such example that can be reasonably described as an aggregated stochastic process of randomized affine processes where the probability measure, we call it reversion measure, for the randomization is not directly observable. Accurate identification of the reversion measure is critical because of its omnipresence in the aggregated stochastic process. However, the modeling accuracy is commonly limited by the available real-world data. One approach to this issue is to evaluate the upper and lower bounds of a statistic of interest subject to ambiguity of the reversion measure. Here, we use the Tsallis Value-at-Risk (TsVaR) as a convex risk measure to generalize the widely used entropic Value-at-Risk (EVaR) as a sharp statistical indicator. We demonstrate that the EVaR cannot be used for evaluating key statistics, such as mean and variance, of the streamflow discharge due to the blowup of some exponential integrand. In contrast, the TsVaR avoids this issue because it requires only the existence of some polynomial, not exponential moment. As a demonstration, we apply the semi-implicit gradient descent method to calculate the TsVaR and corresponding Radon-Nikodym derivative for time series data of actual streamflow discharges in mountainous river environments.

We propose methods for the analysis of hierarchical clustering that fully use the multi-resolution structure provided by a dendrogram. Specifically, we propose a loss for choosing between clustering methods, a feature importance score and a graphical tool for visualizing the segmentation of features in a dendrogram. Current approaches to these tasks lead to loss of information since they require the user to generate a single partition of the instances by cutting the dendrogram at a specified level. Our proposed methods, instead, use the full structure of the dendrogram. The key insight behind the proposed methods is to view a dendrogram as a phylogeny. This analogy permits the assignment of a feature value to each internal node of a tree through an evolutionary model. Real and simulated datasets provide evidence that our proposed framework has desirable outcomes and gives more insights than state-of-art approaches. We provide an R package that implements our methods.

In the sequential decision making setting, an agent aims to achieve systematic generalization over a large, possibly infinite, set of environments. Such environments are modeled as discrete Markov decision processes with both states and actions represented through a feature vector. The underlying structure of the environments allows the transition dynamics to be factored into two components: one that is environment-specific and another that is shared. Consider a set of environments that share the laws of motion as an example. In this setting, the agent can take a finite amount of reward-free interactions from a subset of these environments. The agent then must be able to approximately solve any planning task defined over any environment in the original set, relying on the above interactions only. Can we design a provably efficient algorithm that achieves this ambitious goal of systematic generalization? In this paper, we give a partially positive answer to this question. First, we provide a tractable formulation of systematic generalization by employing a causal viewpoint. Then, under specific structural assumptions, we provide a simple learning algorithm that guarantees any desired planning error up to an unavoidable sub-optimality term, while showcasing a polynomial sample complexity.

To provide rigorous uncertainty quantification for online learning models, we develop a framework for constructing uncertainty sets that provably control risk -- such as coverage of confidence intervals, false negative rate, or F1 score -- in the online setting. This extends conformal prediction to apply to a larger class of online learning problems. Our method guarantees risk control at any user-specified level even when the underlying data distribution shifts drastically, even adversarially, over time in an unknown fashion. The technique we propose is highly flexible as it can be applied with any base online learning algorithm (e.g., a deep neural network trained online), requiring minimal implementation effort and essentially zero additional computational cost. We further extend our approach to control multiple risks simultaneously, so the prediction sets we generate are valid for all given risks. To demonstrate the utility of our method, we conduct experiments on real-world tabular time-series data sets showing that the proposed method rigorously controls various natural risks. Furthermore, we show how to construct valid intervals for an online image-depth estimation problem that previous sequential calibration schemes cannot handle.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

北京阿比特科技有限公司