While preconditioning is a long-standing concept to accelerate iterative methods for linear systems, generalizations to matrix functions are still in their infancy. We go a further step in this direction, introducing polynomial preconditioning for Krylov subspace methods which approximate the action of the matrix square root and inverse square root on a vector. Preconditioning reduces the subspace size and therefore avoids the storage problem together with -- for non-Hermitian matrices -- the increased computational cost per iteration that arises in the unpreconditioned case. Polynomial preconditioning is an attractive alternative to current restarting or sketching approaches since it is simpler and computationally more efficient. We demonstrate this for several numerical examples.
We use Markov categories to develop generalizations of the theory of Markov chains and hidden Markov models in an abstract setting. This comprises characterizations of hidden Markov models in terms of local and global conditional independences as well as existing algorithms for Bayesian filtering and smoothing applicable in all Markov categories with conditionals. We show that these algorithms specialize to existing ones such as the Kalman filter, forward-backward algorithm, and the Rauch-Tung-Striebel smoother when instantiated in appropriate Markov categories. Under slightly stronger assumptions, we also prove that the sequence of outputs of the Bayes filter is itself a Markov chain with a concrete formula for its transition maps. There are two main features of this categorical framework. The first is its generality, as it can be used in any Markov category with conditionals. In particular, it provides a systematic unified account of hidden Markov models and algorithms for filtering and smoothing in discrete probability, Gaussian probability, measure-theoretic probability, possibilistic nondeterminism and others at the same time. The second feature is the intuitive visual representation of information flow in these algorithms in terms of string diagrams.
Judgment aggregation is a framework to aggregate individual opinions on multiple, logically connected issues into a collective outcome. It is open to manipulative attacks such as \textsc{Manipulation} where judges cast their judgments strategically. Previous works have shown that most computational problems corresponding to these manipulative attacks are \NP-hard. This desired computational barrier, however, often relies on formulas that are either of unbounded size or of complex structure. We revisit the computational complexity for various \textsc{Manipulation} and \textsc{Bribery} problems in judgment aggregation, now focusing on simple and realistic formulas. We restrict all formulas to be clauses that are (positive) monotone, Horn-clauses, or have bounded length. For basic variants of \textsc{Manipulation}, we show that these restrictions make several variants, which were in general known to be \NP-hard, polynomial-time solvable. Moreover, we provide a P vs.\ NP dichotomy for a large class of clause restrictions (generalizing monotone and Horn clauses) by showing a close relationship between variants of \textsc{Manipulation} and variants of \textsc{Satisfiability}. For Hamming distance based \textsc{Manipulation}, we show that \NP-hardness even holds for positive monotone clauses of length three, but the problem becomes polynomial-time solvable for positive monotone clauses of length two. For \textsc{Bribery}, we show that \NP-hardness even holds for positive monotone clauses of length two, but it becomes polynomial-time solvable for the same clause set if there is a constant budget.
Sequences of linear systems arise in the predictor-corrector method when computing the Pareto front for multi-objective optimization. Rather than discarding information generated when solving one system, it may be advantageous to recycle information for subsequent systems. To accomplish this, we seek to reduce the overall cost of computation when solving linear systems using common recycling methods. In this work, we assessed the performance of recycling minimum residual (RMINRES) method along with a map between coefficient matrices. For these methods to be fully integrated into the software used in Enouen et al. (2022), there must be working version of each in both Python and PyTorch. Herein, we discuss the challenges we encountered and solutions undertaken (and some ongoing) when computing efficient Python implementations of these recycling strategies. The goal of this project was to implement RMINRES in Python and PyTorch and add it to the established Pareto front code to reduce computational cost. Additionally, we wanted to implement the sparse approximate maps code in Python and PyTorch, so that it can be parallelized in future work.
Separation bounds are a fundamental measure of the complexity of solving a zero-dimensional system as it measures how difficult it is to separate its zeroes. In the positive dimensional case, the notion of reach takes its place. In this paper, we provide bounds on the reach of a smooth algebraic variety in terms of several invariants of interest: the condition number, Smale's $\gamma$ and the bit-size. We also provide probabilistic bounds for random algebraic varieties under some general assumptions.
We investigate both the theoretical and algorithmic aspects of likelihood-based methods for recovering a complex-valued signal from multiple sets of measurements, referred to as looks, affected by speckle (multiplicative) noise. Our theoretical contributions include establishing the first existing theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our theoretical results capture the dependence of MSE upon the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we introduce the concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with projected gradient descent. Furthermore, we show how employing Newton-Schulz algorithm for calculating matrix inverses within the iterations of PGD reduces the computational complexity of the algorithm. We will show that this method achieves the state-of-the-art performance.
We describe a fast, direct solver for elliptic partial differential equations on a two-dimensional hierarchy of adaptively refined, Cartesian meshes. Our solver, inspired by the Hierarchical Poincar\'e-Steklov (HPS) method introduced by Gillman and Martinsson (SIAM J. Sci. Comput., 2014) uses fast solvers on locally uniform Cartesian patches stored in the leaves of a quadtree and is the first such solver that works directly with the adaptive quadtree mesh managed using the grid management library \pforest (C. Burstedde, L. Wilcox, O. Ghattas, SIAM J. Sci. Comput. 2011). Within each Cartesian patch, stored in leaves of the quadtree, we use a second order finite volume discretization on cell-centered meshes. Key contributions of our algorithm include 4-to-1 merge and split implementations for the HPS build stage and solve stage, respectively. We demonstrate our solver on Poisson and Helmholtz problems with a mesh adapted to the high local curvature of the right-hand side.
Recently, influence functions present an apparatus for achieving explainability for deep neural models by quantifying the perturbation of individual train instances that might impact a test prediction. Our objectives in this paper are twofold. First we incorporate influence functions as a feedback into the model to improve its performance. Second, in a dataset extension exercise, using influence functions to automatically identify data points that have been initially `silver' annotated by some existing method and need to be cross-checked (and corrected) by annotators to improve the model performance. To meet these objectives, in this paper, we introduce InfFeed, which uses influence functions to compute the influential instances for a target instance. Toward the first objective, we adjust the label of the target instance based on its influencer(s) label. In doing this, InfFeed outperforms the state-of-the-art baselines (including LLMs) by a maximum macro F1-score margin of almost 4% for hate speech classification, 3.5% for stance classification, and 3% for irony and 2% for sarcasm detection. Toward the second objective we show that manually re-annotating only those silver annotated data points in the extension set that have a negative influence can immensely improve the model performance bringing it very close to the scenario where all the data points in the extension set have gold labels. This allows for huge reduction of the number of data points that need to be manually annotated since out of the silver annotated extension dataset, the influence function scheme picks up ~1/1000 points that need manual correction.
Despite the possibility to quickly compute reachable sets of large-scale linear systems, current methods are not yet widely applied by practitioners. The main reason for this is probably that current approaches are not push-button-capable and still require to manually set crucial parameters, such as time step sizes and the accuracy of the used set representation -- these settings require expert knowledge. We present a generic framework to automatically find near-optimal parameters for reachability analysis of linear systems given a user-defined accuracy. To limit the computational overhead as much as possible, our methods tune all relevant parameters during runtime. We evaluate our approach on benchmarks from the ARCH competition as well as on random examples. Our results show that our new framework verifies the selected benchmarks faster than manually-tuned parameters and is an order of magnitude faster compared to genetic algorithms.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.