The computing in the network (COIN) paradigm has emerged as a potential solution for computation-intensive applications like the metaverse by utilizing unused network resources. The blockchain (BC) guarantees task-offloading privacy, but cost reduction, queueing delays, and redundancy elimination remain open problems. This paper presents a redundancy-aware BC-based approach for the metaverse's partial computation offloading (PCO). Specifically, we formulate a joint BC redundancy factor (BRF) and PCO problem to minimize computation costs, maximize incentives, and meet delay and BC offloading constraints. We proved this problem is NP-hard and transformed it into two subproblems based on their temporal correlation: real-time PCO and Markov decision process-based BRF. We formulated the PCO problem as a multiuser game, proposed a decentralized algorithm for Nash equilibrium under any BC redundancy state, and designed a double deep Q-network-based algorithm for the optimal BRF policy. The BRF strategy is updated periodically based on user computation demand and network status to assist the PCO algorithm. The experimental results suggest that the proposed approach outperforms existing schemes, resulting in a remarkable 47% reduction in cost overhead, delivering approximately 64% higher rewards, and achieving convergence in just a few training episodes.
The escalating complexity of modern computing frameworks has resulted in a surge in the cybersecurity vulnerabilities reported to the National Vulnerability Database (NVD) by practitioners. Despite the fact that the stature of NVD is one of the most significant databases for the latest insights into vulnerabilities, extracting meaningful trends from such a large amount of unstructured data is still challenging without the application of suitable technological methodologies. Previous efforts have mostly concentrated on software vulnerabilities; however, a holistic strategy incorporates approaches for mitigating vulnerabilities, score prediction, and a knowledge-generating system that may extract relevant insights from the Common Weakness Enumeration (CWE) and Common Vulnerability Exchange (CVE) databases is notably absent. As the number of hardware attacks on Internet of Things (IoT) devices continues to rapidly increase, we present the Hardware Vulnerability to Weakness Mapping (HW-V2W-Map) Framework, which is a Machine Learning (ML) framework focusing on hardware vulnerabilities and IoT security. The architecture that we have proposed incorporates an Ontology-driven Storytelling framework, which automates the process of updating the ontology in order to recognize patterns and evolution of vulnerabilities over time and provides approaches for mitigating the vulnerabilities. The repercussions of vulnerabilities can be mitigated as a result of this, and conversely, future exposures can be predicted and prevented. Furthermore, our proposed framework utilized Generative Pre-trained Transformer (GPT) Large Language Models (LLMs) to provide mitigation suggestions.
Enabling humans and robots to collaborate effectively requires purposeful communication and an understanding of each other's affordances. Prior work in human-robot collaboration has incorporated knowledge of human affordances, i.e., their action possibilities in the current context, into autonomous robot decision-making. This "affordance awareness" is especially promising for service robots that need to know when and how to assist a person that cannot independently complete a task. However, robots still fall short in performing many common tasks autonomously. In this work-in-progress paper, we propose an augmented reality (AR) framework that bridges the gap in an assistive robot's capabilities by actively engaging with a human through a shared affordance-awareness representation. Leveraging the different perspectives from a human wearing an AR headset and a robot's equipped sensors, we can build a perceptual representation of the shared environment and model regions of respective agent affordances. The AR interface can also allow both agents to communicate affordances with one another, as well as prompt for assistance when attempting to perform an action outside their affordance region. This paper presents the main components of the proposed framework and discusses its potential through a domestic cleaning task experiment.
Deep learning models are known to suffer from the problem of bias, and researchers have been exploring methods to address this issue. However, most of these methods require prior knowledge of the bias and are not always practical. In this paper, we focus on a more practical setting with no prior information about the bias. Generally, in this setting, there are a large number of bias-aligned samples that cause the model to produce biased predictions and a few bias-conflicting samples that do not conform to the bias. If the training data is limited, the influence of the bias-aligned samples may become even stronger on the model predictions, and we experimentally demonstrate that existing debiasing techniques suffer severely in such cases. In this paper, we examine the effects of unknown bias in small dataset regimes and present a novel approach to mitigate this issue. The proposed approach directly addresses the issue of the extremely low occurrence of bias-conflicting samples in limited data settings through the synthesis of hybrid samples that can be used to reduce the effect of bias. We perform extensive experiments on several benchmark datasets and experimentally demonstrate the effectiveness of our proposed approach in addressing any unknown bias in the presence of limited data. Specifically, our approach outperforms the vanilla, LfF, LDD, and DebiAN debiasing methods by absolute margins of 10.39%, 9.08%, 8.07%, and 9.67% when only 10% of the Corrupted CIFAR-10 Type 1 dataset is available with a bias-conflicting sample ratio of 0.05.
Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.
Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.