亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Search query variation poses a challenge in e-commerce search, as equivalent search intents can be expressed through different queries with surface-level differences. This paper introduces a framework to recognize and leverage query equivalence to enhance searcher and business outcomes. The proposed approach addresses three key problems: mapping queries to vector representations of search intent, identifying nearest neighbor queries expressing equivalent or similar intent, and optimizing for user or business objectives. The framework utilizes both surface similarity and behavioral similarity to determine query equivalence. Surface similarity involves canonicalizing queries based on word inflection, word order, compounding, and noise words. Behavioral similarity leverages historical search behavior to generate vector representations of query intent. An offline process is used to train a sentence similarity model, while an online nearest neighbor approach supports processing of unseen queries. Experimental evaluations demonstrate the effectiveness of the proposed approach, outperforming popular sentence transformer models and achieving a Pearson correlation of 0.85 for query similarity. The results highlight the potential of leveraging historical behavior data and training models to recognize and utilize query equivalence in e-commerce search, leading to improved user experiences and business outcomes. Further advancements and benchmark datasets are encouraged to facilitate the development of solutions for this critical problem in the e-commerce domain.

相關內容

It is shown in this note that approximating the number of independent sets in a $k$-uniform linear hypergraph with maximum degree at most $\Delta$ is NP-hard if $\Delta\geq 5\cdot 2^{k-1}+1$. This confirms that for the relevant sampling and approximate counting problems, the regimes on the maximum degree where the state-of-the-art algorithms work are tight, up to some small factors. These algorithms include: the approximate sampler and randomised approximation scheme by Hermon, Sly and Zhang (RSA, 2019), the perfect sampler by Qiu, Wang and Zhang (ICALP, 2022), and the deterministic approximation scheme by Feng, Guo, Wang, Wang and Yin (FOCS, 2023).

Model-based diagnosis has been an active research topic in different communities including artificial intelligence, formal methods, and control. This has led to a set of disparate approaches addressing different classes of systems and seeking different forms of diagnoses. In this paper, we resolve such disparities by generalising Reiter's theory to be agnostic to the types of systems and diagnoses considered. This more general theory of diagnosis from first principles defines the minimal diagnosis as the set of preferred diagnosis candidates in a search space of hypotheses. Computing the minimal diagnosis is achieved by exploring the space of diagnosis hypotheses, testing sets of hypotheses for consistency with the system's model and the observation, and generating conflicts that rule out successors and other portions of the search space. Under relatively mild assumptions, our algorithms correctly compute the set of preferred diagnosis candidates. The main difficulty here is that the search space is no longer a powerset as in Reiter's theory, and that, as consequence, many of the implicit properties (such as finiteness of the search space) no longer hold. The notion of conflict also needs to be generalised and we present such a more general notion. We present two implementations of these algorithms, using test solvers based on satisfiability and heuristic search, respectively, which we evaluate on instances from two real world discrete event problems. Despite the greater generality of our theory, these implementations surpass the special purpose algorithms designed for discrete event systems, and enable solving instances that were out of reach of existing diagnosis approaches.

The quantum rate-distortion function plays a fundamental role in quantum information theory, however there is currently no practical algorithm which can efficiently compute this function to high accuracy for moderate channel dimensions. In this paper, we show how symmetry reduction can significantly simplify common instances of the entanglement-assisted quantum rate-distortion problems, allowing for more efficient computation regardless of the numerical algorithm being used. For some of these problem instances, symmetry reduction allows us to derive closed-form expressions for the quantum rate-distortion function. Additionally, we propose an inexact variant of the mirror descent algorithm to compute the quantum rate-distortion function with provable sublinear convergence rates. We show how this mirror descent algorithm is related to Blahut-Arimoto and expectation-maximization methods previously used to solve similar problems in information theory. Using these techniques, we present the first numerical experiments to compute a multi-qubit quantum rate-distortion function, and show that our proposed algorithm solves faster and to higher accuracy when compared to existing methods.

Novel view synthesis and 3D modeling using implicit neural field representation are shown to be very effective for calibrated multi-view cameras. Such representations are known to benefit from additional geometric and semantic supervision. Most existing methods that exploit additional supervision require dense pixel-wise labels or localized scene priors. These methods cannot benefit from high-level vague scene priors provided in terms of scenes' descriptions. In this work, we aim to leverage the geometric prior of Manhattan scenes to improve the implicit neural radiance field representations. More precisely, we assume that only the knowledge of the indoor scene (under investigation) being Manhattan is known -- with no additional information whatsoever -- with an unknown Manhattan coordinate frame. Such high-level prior is used to self-supervise the surface normals derived explicitly in the implicit neural fields. Our modeling allows us to cluster the derived normals and exploit their orthogonality constraints for self-supervision. Our exhaustive experiments on datasets of diverse indoor scenes demonstrate the significant benefit of the proposed method over the established baselines. The source code is available at //github.com/nikola3794/normal-clustering-nerf.

Adversarial examples in machine learning has emerged as a focal point of research due to their remarkable ability to deceive models with seemingly inconspicuous input perturbations, potentially resulting in severe consequences. In this study, we embark on a comprehensive exploration of adversarial machine learning models, shedding light on their intrinsic complexity and interpretability. Our investigation reveals intriguing links between machine learning model complexity and Einstein's theory of special relativity, through the concept of entanglement. More specific, we define entanglement computationally and demonstrate that distant feature samples can exhibit strong correlations, akin to entanglement in quantum realm. This revelation challenges conventional perspectives in describing the phenomenon of adversarial transferability observed in contemporary machine learning models. By drawing parallels with the relativistic effects of time dilation and length contraction during computation, we gain deeper insights into adversarial machine learning, paving the way for more robust and interpretable models in this rapidly evolving field.

This paper addresses the problem of statistical inference for latent continuous-time stochastic processes, which is often intractable, particularly for discrete state space processes described by Markov jump processes. To overcome this issue, we propose a new tractable inference scheme based on an entropic matching framework that can be embedded into the well-known expectation propagation algorithm. We demonstrate the effectiveness of our method by providing closed-form results for a simple family of approximate distributions and apply it to the general class of chemical reaction networks, which are a crucial tool for modeling in systems biology. Moreover, we derive closed form expressions for point estimation of the underlying parameters using an approximate expectation maximization procedure. We evaluate the performance of our method on various chemical reaction network instantiations, including a stochastic Lotka-Voltera example, and discuss its limitations and potential for future improvements. Our proposed approach provides a promising direction for addressing complex continuous-time Bayesian inference problems.

Subgraph counting is a fundamental problem in understanding and analyzing graph structured data, yet computationally challenging. This calls for an accurate and efficient algorithm for Subgraph Cardinality Estimation, which is to estimate the number of all isomorphic embeddings of a query graph in a data graph. We present FaSTest, a novel algorithm that combines (1) a powerful filtering technique to significantly reduce the sample space, (2) an adaptive tree sampling algorithm for accurate and efficient estimation, and (3) a worst-case optimal stratified graph sampling algorithm for difficult instances. Extensive experiments on real-world datasets show that FaSTest outperforms state-of-the-art sampling-based methods by up to two orders of magnitude and GNN-based methods by up to three orders of magnitude in terms of accuracy.

A popular heuristic method for improving clustering results is to apply dimensionality reduction before running clustering algorithms. It has been observed that spectral-based dimensionality reduction tools, such as PCA or SVD, improve the performance of clustering algorithms in many applications. This phenomenon indicates that spectral method not only serves as a dimensionality reduction tool, but also contributes to the clustering procedure in some sense. It is an interesting question to understand the behavior of spectral steps in clustering problems. As an initial step in this direction, this paper studies the power of vanilla-SVD algorithm in the stochastic block model (SBM). We show that, in the symmetric setting, vanilla-SVD algorithm recovers all clusters correctly. This result answers an open question posed by Van Vu (Combinatorics Probability and Computing, 2018) in the symmetric setting.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

北京阿比特科技有限公司