Many applications rely on solving time-dependent partial differential equations (PDEs) that include second derivatives. Summation-by-parts (SBP) operators are crucial for developing stable, high-order accurate numerical methodologies for such problems. Conventionally, SBP operators are tailored to the assumption that polynomials accurately approximate the solution, and SBP operators should thus be exact for them. However, this assumption falls short for a range of problems for which other approximation spaces are better suited. We recently addressed this issue and developed a theory for first-derivative SBP operators based on general function spaces, coined function-space SBP (FSBP) operators. In this paper, we extend the innovation of FSBP operators to accommodate second derivatives. The developed second-derivative FSBP operators maintain the desired mimetic properties of existing polynomial SBP operators while allowing for greater flexibility by being applicable to a broader range of function spaces. We establish the existence of these operators and detail a straightforward methodology for constructing them. By exploring various function spaces, including trigonometric, exponential, and radial basis functions, we illustrate the versatility of our approach. We showcase the superior performance of these non-polynomial FSBP operators over traditional polynomial-based operators for a suite of one- and two-dimensional problems, encompassing a boundary layer problem and the viscous Burgers' equation. The work presented here opens up possibilities for using second-derivative SBP operators based on suitable function spaces, paving the way for a wide range of applications in the future.
We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schr\"odinger equation (NLSE) with semi-smooth nonlinearity $ f(\rho) = \rho^\sigma$, where $\rho=|\psi|^2$ is the density with $\psi$ the wave function and $\sigma>0$ is the exponent of the semi-smooth nonlinearity. Under the assumption of $ H^2 $-solution of the NLSE, we prove error bounds at $ O(\tau^{\frac{1}{2}+\sigma} + h^{1+2\sigma}) $ and $ O(\tau + h^{2}) $ in $ L^2 $-norm for $0<\sigma\leq\frac{1}{2}$ and $\sigma\geq\frac{1}{2}$, respectively, and an error bound at $ O(\tau^\frac{1}{2} + h) $ in $ H^1 $-norm for $\sigma\geq \frac{1}{2}$, where $h$ and $\tau$ are the mesh size and time step size, respectively. In addition, when $\frac{1}{2}<\sigma<1$ and under the assumption of $ H^3 $-solution of the NLSE, we show an error bound at $ O(\tau^{\sigma} + h^{2\sigma}) $ in $ H^1 $-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional $ L^2 $-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of $ 0 < \sigma \leq \frac{1}{2}$, and to establish an $ l^\infty $-conditional $ H^1 $-stability to obtain the $ l^\infty $-bound of the numerical solution by using the mathematical induction and the error estimates for the case of $ \sigma \ge \frac{1}{2}$; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.
Stochastic multi-scale modeling and simulation for nonlinear thermo-mechanical problems of composite materials with complicated random microstructures remains a challenging issue. In this paper, we develop a novel statistical higher-order multi-scale (SHOMS) method for nonlinear thermo-mechanical simulation of random composite materials, which is designed to overcome limitations of prohibitive computation involving the macro-scale and micro-scale. By virtue of statistical multi-scale asymptotic analysis and Taylor series method, the SHOMS computational model is rigorously derived for accurately analyzing nonlinear thermo-mechanical responses of random composite materials both in the macro-scale and micro-scale. Moreover, the local error analysis of SHOMS solutions in the point-wise sense clearly illustrates the crucial indispensability of establishing the higher-order asymptotic corrected terms in SHOMS computational model for keeping the conservation of local energy and momentum. Then, the corresponding space-time multi-scale numerical algorithm with off-line and on-line stages is designed to efficiently simulate nonlinear thermo-mechanical behaviors of random composite materials. Finally, extensive numerical experiments are presented to gauge the efficiency and accuracy of the proposed SHOMS approach.
We review how to simulate continuous determinantal point processes (DPPs) and improve the current simulation algorithms in several important special cases as well as detail how certain types of conditional simulation can be carried out. Importantly we show how to speed up the simulation of the widely used Fourier based projection DPPs, which arise as approximations of more general DPPs. The algorithms are implemented and published as open source software.
This study focuses on addressing the challenges of solving analytically intractable differential equations that arise in scientific and engineering fields such as Hamilton-Jacobi-Bellman. Traditional numerical methods and neural network approaches for solving such equations often require independent simulation or retraining when the underlying parameters change. To overcome this, this study employs a physics-informed DeepONet (PI-DeepONet) to approximate the solution operator of a nonlinear parabolic equation. PI-DeepONet integrates known physics into a deep neural network, which learns the solution of the PDE.
This work is concerned with kinetic equations with velocity of constant magnitude. We propose a quadrature method of moments based on the Poisson kernel, called Poisson-EQMOM. The derived moment closure systems are well defined for all physically relevant moments and the resultant approximations of the distribution function converge as the number of moments goes to infinity. The convergence makes our method stand out from most existing moment methods. Moreover, we devise a delicate moment inversion algorithm. As an application, the Vicsek model is studied for overdamped active particles. Then the Poisson-EQMOM is validated with a series of numerical tests including spatially homogeneous, one-dimensional and two-dimensional problems.
Statistical depth functions provide measures of the outlyingness, or centrality, of the elements of a space with respect to a distribution. It is a nonparametric concept applicable to spaces of any dimension, for instance, multivariate and functional. Liu and Singh (1993) presented a multivariate two-sample test based on depth-ranks. We dedicate this paper to improving the power of the associated test statistic and incorporating its applicability to functional data. In doing so, we obtain a more natural test statistic that is symmetric in both samples. We derive the null asymptotic of the proposed test statistic, also proving the validity of the testing procedure for functional data. Finally, the finite sample performance of the test for functional data is illustrated by means of a simulation study and a real data analysis on annual temperature curves of ocean drifters is executed.
A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.
Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.
Single-parameter summaries of variable effects are desirable for ease of interpretation, but linear models, which would deliver these, may fit poorly to the data. A modern approach is to estimate the average partial effect -- the average slope of the regression function with respect to the predictor of interest -- using a doubly robust semiparametric procedure. Most existing work has focused on specific forms of nuisance function estimators. We extend the scope to arbitrary plug-in nuisance function estimation, allowing for the use of modern machine learning methods which in particular may deliver non-differentiable regression function estimates. Our procedure involves resmoothing a user-chosen first-stage regression estimator to produce a differentiable version, and modelling the conditional distribution of the predictors through a location-scale model. We show that our proposals lead to a semiparametric efficient estimator under relatively weak assumptions. Our theory makes use of a new result on the sub-Gaussianity of Lipschitz score functions that may be of independent interest. We demonstrate the attractive numerical performance of our approach in a variety of settings including ones with misspecification.
Time-dependent basis reduced order models (TDB ROMs) have successfully been used for approximating the solution to nonlinear stochastic partial differential equations (PDEs). For many practical problems of interest, discretizing these PDEs results in massive matrix differential equations (MDEs) that are too expensive to solve using conventional methods. While TDB ROMs have the potential to significantly reduce this computational burden, they still suffer from the following challenges: (i) inefficient for general nonlinearities, (ii) intrusive implementation, (iii) ill-conditioned in the presence of small singular values, and (iv) error accumulation due to fixed rank. To this end, we present a scalable method based on oblique projections for solving TDB ROMs that is computationally efficient, minimally intrusive, robust in the presence of small singular values, rank-adaptive, and highly parallelizable. These favorable properties are achieved via low-rank approximation of the time discrete MDE. Using the discrete empirical interpolation method (DEIM), a low-rank decomposition is computed at each iteration of the time stepping scheme, enabling a near-optimal approximation at a fraction of the cost. We coin the new approach TDB-CUR since it is equivalent to a CUR decomposition based on sparse row and column samples of the MDE. We also propose a rank-adaptive procedure to control the error on-the-fly. Numerical results demonstrate the accuracy, efficiency, and robustness of the new method for a diverse set of problems.