亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite their remarkable performance, the development of Large Language Models (LLMs) faces a critical challenge in scalable oversight: providing effective feedback for tasks where human evaluation is difficult or where LLMs outperform humans. While there is growing interest in using LLMs for critique, current approaches still rely on human annotations or more powerful models, leaving the issue of enhancing critique capabilities without external supervision unresolved. We introduce SCRIT (Self-evolving CRITic), a framework that enables genuine self-evolution of critique abilities. Technically, SCRIT self-improves by training on synthetic data, generated by a contrastive-based self-critic that uses reference solutions for step-by-step critique, and a self-validation mechanism that ensures critique quality through correction outcomes. Implemented with Qwen2.5-72B-Instruct, one of the most powerful LLMs, SCRIT achieves up to a 10.3\% improvement on critique-correction and error identification benchmarks. Our analysis reveals that SCRIT's performance scales positively with data and model size, outperforms alternative approaches, and benefits critically from its self-validation component.

相關內容

 DeepSeek-AI,Aixin Liu,Bei Feng,Bing Xue,Bingxuan Wang,Bochao Wu,Chengda Lu,Chenggang Zhao,Chengqi Deng,Chenyu Zhang,Chong Ruan,Damai Dai,Daya Guo,Dejian Yang,Deli Chen,Dongjie Ji,Erhang Li,Fangyun Lin,Fucong Dai,Fuli Luo,Guangbo Hao,Guanting Chen,Guowei Li,H. Zhang,Han Bao,Hanwei Xu,Haocheng Wang,Haowei Zhang,Honghui Ding,Huajian Xin,Huazuo Gao,Hui Li,Hui Qu,J. L. Cai,Jian Liang,Jianzhong Guo,Jiaqi Ni,Jiashi Li,Jiawei Wang,Jin Chen,Jingchang Chen,Jingyang Yuan,Junjie Qiu,Junlong Li,Junxiao Song,Kai Dong,Kai Hu,Kaige Gao,Kang Guan,Kexin Huang,Kuai Yu,Lean Wang,Lecong Zhang,Lei Xu,Leyi Xia,Liang Zhao,Litong Wang,Liyue Zhang,Meng Li,Miaojun Wang,Mingchuan Zhang,Minghua Zhang,Minghui Tang,Mingming Li,Ning Tian,Panpan Huang,Peiyi Wang,Peng Zhang,Qiancheng Wang,Qihao Zhu,Qinyu Chen,Qiushi Du,R. J. Chen,R. L. Jin,Ruiqi Ge,Ruisong Zhang,Ruizhe Pan,Runji Wang,Runxin Xu,Ruoyu Zhang,Ruyi Chen,S. S. Li,Shanghao Lu,Shangyan Zhou,Shanhuang Chen,Shaoqing Wu,Shengfeng Ye,Shengfeng Ye,Shirong Ma,Shiyu Wang,Shuang Zhou,Shuiping Yu,Shunfeng Zhou,Shuting Pan,T. Wang,Tao Yun,Tian Pei,Tianyu Sun,W. L. Xiao,Wangding Zeng,Wanjia Zhao,Wei An,Wen Liu,Wenfeng Liang,Wenjun Gao,Wenqin Yu,Wentao Zhang,X. Q. Li,Xiangyue Jin,Xianzu Wang,Xiao Bi,Xiaodong Liu,Xiaohan Wang,Xiaojin Shen,Xiaokang Chen,Xiaokang Zhang,Xiaosha Chen,Xiaotao Nie,Xiaowen Sun,Xiaoxiang Wang,Xin Cheng,Xin Liu,Xin Xie,Xingchao Liu,Xingkai Yu,Xinnan Song,Xinxia Shan,Xinyi Zhou,Xinyu Yang,Xinyuan Li,Xuecheng Su,Xuheng Lin,Y. K. Li,Y. Q. Wang,Y. X. Wei,Y. X. Zhu,Yang Zhang,Yanhong Xu,Yanhong Xu,Yanping Huang,Yao Li,Yao Zhao,Yaofeng Sun,Yaohui Li,Yaohui Wang,Yi Yu,Yi Zheng,Yichao Zhang,Yifan Shi,Yiliang Xiong,Ying He,Ying Tang,Yishi Piao,Yisong Wang,Yixuan Tan,Yiyang Ma,Yiyuan Liu,Yongqiang Guo,Yu Wu,Yuan Ou,Yuchen Zhu,Yuduan Wang,Yue Gong,Yuheng Zou,Yujia He,Yukun Zha,Yunfan Xiong,Yunxian Ma,Yuting Yan,Yuxiang Luo,Yuxiang You,Yuxuan Liu,Yuyang Zhou,Z. F. Wu,Z. Z. Ren,Zehui Ren,Zhangli Sha,Zhe Fu,Zhean Xu,Zhen Huang,Zhen Zhang,Zhenda Xie,Zhengyan Zhang,Zhewen Hao,Zhibin Gou,Zhicheng Ma,Zhigang Yan,Zhihong Shao,Zhipeng Xu,Zhiyu Wu,Zhongyu Zhang,Zhuoshu Li,Zihui Gu,Zijia Zhu,Zijun Liu,Zilin Li,Ziwei Xie,Ziyang Song,Ziyi Gao,Zizheng Pan
DeepSeek-AI,Aixin Liu,Bei Feng,Bing Xue,Bingxuan Wang,Bochao Wu,Chengda Lu,Chenggang Zhao,Chengqi Deng,Chenyu Zhang,Chong Ruan,Damai Dai,Daya Guo,Dejian Yang,Deli Chen,Dongjie Ji,Erhang Li,Fangyun Lin,Fucong Dai,Fuli Luo,Guangbo Hao,Guanting Chen,Guowei Li,H. Zhang,Han Bao,Hanwei Xu,Haocheng Wang,Haowei Zhang,Honghui Ding,Huajian Xin,Huazuo Gao,Hui Li,Hui Qu,J. L. Cai,Jian Liang,Jianzhong Guo,Jiaqi Ni,Jiashi Li,Jiawei Wang,Jin Chen,Jingchang Chen,Jingyang Yuan,Junjie Qiu,Junlong Li,Junxiao Song,Kai Dong,Kai Hu,Kaige Gao,Kang Guan,Kexin Huang,Kuai Yu,Lean Wang,Lecong Zhang,Lei Xu,Leyi Xia,Liang Zhao,Litong Wang,Liyue Zhang,Meng Li,Miaojun Wang,Mingchuan Zhang,Minghua Zhang,Minghui Tang,Mingming Li,Ning Tian,Panpan Huang,Peiyi Wang,Peng Zhang,Qiancheng Wang,Qihao Zhu,Qinyu Chen,Qiushi Du,R. J. Chen,R. L. Jin,Ruiqi Ge,Ruisong Zhang,Ruizhe Pan,Runji Wang,Runxin Xu,Ruoyu Zhang,Ruyi Chen,S. S. Li,Shanghao Lu,Shangyan Zhou,Shanhuang Chen,Shaoqing Wu,Shengfeng Ye,Shengfeng Ye,Shirong Ma,Shiyu Wang,Shuang Zhou,Shuiping Yu,Shunfeng Zhou,Shuting Pan,T. Wang,Tao Yun,Tian Pei,Tianyu Sun,W. L. Xiao,Wangding Zeng,Wanjia Zhao,Wei An,Wen Liu,Wenfeng Liang,Wenjun Gao,Wenqin Yu,Wentao Zhang,X. Q. Li,Xiangyue Jin,Xianzu Wang,Xiao Bi,Xiaodong Liu,Xiaohan Wang,Xiaojin Shen,Xiaokang Chen,Xiaokang Zhang,Xiaosha Chen,Xiaotao Nie,Xiaowen Sun,Xiaoxiang Wang,Xin Cheng,Xin Liu,Xin Xie,Xingchao Liu,Xingkai Yu,Xinnan Song,Xinxia Shan,Xinyi Zhou,Xinyu Yang,Xinyuan Li,Xuecheng Su,Xuheng Lin,Y. K. Li,Y. Q. Wang,Y. X. Wei,Y. X. Zhu,Yang Zhang,Yanhong Xu,Yanhong Xu,Yanping Huang,Yao Li,Yao Zhao,Yaofeng Sun,Yaohui Li,Yaohui Wang,Yi Yu,Yi Zheng,Yichao Zhang,Yifan Shi,Yiliang Xiong,Ying He,Ying Tang,Yishi Piao,Yisong Wang,Yixuan Tan,Yiyang Ma,Yiyuan Liu,Yongqiang Guo,Yu Wu,Yuan Ou,Yuchen Zhu,Yuduan Wang,Yue Gong,Yuheng Zou,Yujia He,Yukun Zha,Yunfan Xiong,Yunxian Ma,Yuting Yan,Yuxiang Luo,Yuxiang You,Yuxuan Liu,Yuyang Zhou,Z. F. Wu,Z. Z. Ren,Zehui Ren,Zhangli Sha,Zhe Fu,Zhean Xu,Zhen Huang,Zhen Zhang,Zhenda Xie,Zhengyan Zhang,Zhewen Hao,Zhibin Gou,Zhicheng Ma,Zhigang Yan,Zhihong Shao,Zhipeng Xu,Zhiyu Wu,Zhongyu Zhang,Zhuoshu Li,Zihui Gu,Zijia Zhu,Zijun Liu,Zilin Li,Ziwei Xie,Ziyang Song,Ziyi Gao,Zizheng Pan

We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at //github.com/deepseek-ai/DeepSeek-V3.

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

Many recent state-of-the-art recommender systems such as D-ATT, TransNet and DeepCoNN exploit reviews for representation learning. This paper proposes a new neural architecture for recommendation with reviews. Our model operates on a multi-hierarchical paradigm and is based on the intuition that not all reviews are created equal, i.e., only a select few are important. The importance, however, should be dynamically inferred depending on the current target. To this end, we propose a review-by-review pointer-based learning scheme that extracts important reviews, subsequently matching them in a word-by-word fashion. This enables not only the most informative reviews to be utilized for prediction but also a deeper word-level interaction. Our pointer-based method operates with a novel gumbel-softmax based pointer mechanism that enables the incorporation of discrete vectors within differentiable neural architectures. Our pointer mechanism is co-attentive in nature, learning pointers which are co-dependent on user-item relationships. Finally, we propose a multi-pointer learning scheme that learns to combine multiple views of interactions between user and item. Overall, we demonstrate the effectiveness of our proposed model via extensive experiments on \textbf{24} benchmark datasets from Amazon and Yelp. Empirical results show that our approach significantly outperforms existing state-of-the-art, with up to 19% and 71% relative improvement when compared to TransNet and DeepCoNN respectively. We study the behavior of our multi-pointer learning mechanism, shedding light on evidence aggregation patterns in review-based recommender systems.

北京阿比特科技有限公司