亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional patient care into a more personalized, efficient, and proactive process. Chatbots, serving as interactive conversational models, will probably drive this patient-centered transformation in healthcare. Through the provision of various services, including diagnosis, personalized lifestyle recommendations, and mental health support, the objective is to substantially augment patient health outcomes, all the while mitigating the workload burden on healthcare providers. The life-critical nature of healthcare applications necessitates establishing a unified and comprehensive set of evaluation metrics for conversational models. Existing evaluation metrics proposed for various generic large language models (LLMs) demonstrate a lack of comprehension regarding medical and health concepts and their significance in promoting patients' well-being. Moreover, these metrics neglect pivotal user-centered aspects, including trust-building, ethics, personalization, empathy, user comprehension, and emotional support. The purpose of this paper is to explore state-of-the-art LLM-based evaluation metrics that are specifically applicable to the assessment of interactive conversational models in healthcare. Subsequently, we present an comprehensive set of evaluation metrics designed to thoroughly assess the performance of healthcare chatbots from an end-user perspective. These metrics encompass an evaluation of language processing abilities, impact on real-world clinical tasks, and effectiveness in user-interactive conversations. Finally, we engage in a discussion concerning the challenges associated with defining and implementing these metrics, with particular emphasis on confounding factors such as the target audience, evaluation methods, and prompt techniques involved in the evaluation process.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Pivotal(公司) · INFORMS · 分解的 · 成比例 ·
2023 年 11 月 7 日

This research examines the pivotal role of human behavior in the realm of healthcare data management, situated at the confluence of technological advancements and human conduct. An in-depth analysis of security breaches in the United States from 2009 to the present elucidates the dominance of human-induced security breaches. While technological weak points are certainly a concern, our study highlights that a significant proportion of breaches are precipitated by human errors and practices, thus pinpointing a conspicuous deficiency in training, awareness, and organizational architecture. In spite of stringent federal mandates, such as the Health Insurance Portability and Accountability Act (HIPAA) and the Health Information Technology for Economic and Clinical Health (HITECH) Act, breaches persist, emphasizing the indispensable role of human factors within this domain. Such oversights not only jeopardize patient data confidentiality but also undermine the foundational trust inherent in the healthcare infrastructure. By probing the socio-technical facets of healthcare security infringements, this article advocates for an integrated, dynamic, and holistic approach to healthcare data security. The findings underscore the imperative of augmenting technological defenses while concurrently elevating human conduct and institutional ethos, thereby cultivating a robust and impervious healthcare data management environment.

Hospital information systems (HIS) have become an essential part of healthcare institutions and now incorporate prescribing support software. Prescription support software allows for structured information capture, which improves the safety, appropriateness and efficiency of prescriptions and reduces the number of adverse drug events (ADEs). However, such a system increases the amount of time physicians spend at a computer entering information instead of providing medical care. In addition, any new visiting clinician must learn to manage complex interfaces since each HIS has its own interfaces. In this paper, we present a natural language interface for e-prescribing software in the form of a spoken dialogue system accessible on a smartphone. This system allows prescribers to record their prescriptions verbally, a form of interaction closer to their usual practice. The system extracts the formal representation of the prescription ready to be checked by the prescribing software and uses the dialogue to request mandatory information, correct errors or warn of particular situations. Since, to the best of our knowledge, there is no existing voice-based prescription dialogue system, we present the system developed in a low-resource environment, focusing on dialogue modeling, semantic extraction and data augmentation. The system was evaluated in the wild with 55 participants. This evaluation showed that our system has an average prescription time of 66.15 seconds for physicians and 35.64 seconds for other experts, and a task success rate of 76\% for physicians and 72\% for other experts. All evaluation data were recorded and annotated to form PxCorpus, the first spoken drug prescription corpus that has been made fully available to the community (\url{//doi.org/10.5281/zenodo.6524162}).

To enhance the performance of large language models (LLMs) in biomedical natural language processing (BioNLP) by introducing a domain-specific instruction dataset and examining its impact when combined with multi-task learning principles. We created the BioInstruct, comprising 25,005 instructions to instruction-tune LLMs(LLaMA 1 & 2, 7B & 13B version). The instructions were created by prompting the GPT-4 language model with three-seed samples randomly drawn from an 80 human curated instructions. We employed Low-Rank Adaptation(LoRA) for parameter-efficient fine-tuning. We then evaluated these instruction-tuned LLMs on several BioNLP tasks, which can be grouped into three major categories: question answering(QA), information extraction(IE), and text generation(GEN). We also examined whether categories(e.g., QA, IE, and generation) of instructions impact model performance. Comparing with LLMs without instruction-tuned, our instruction-tuned LLMs demonstrated marked performance gains: 17.3% in QA, 5.7% in IE, and 96% in Generation tasks. Our 7B-parameter instruction-tuned LLaMA 1 model was competitive or even surpassed other LLMs in the biomedical domain that were also fine-tuned from LLaMA 1 with vast domain-specific data or a variety of tasks. Our results also show that the performance gain is significantly higher when instruction fine-tuning is conducted with closely related tasks. Our findings align with the observations of multi-task learning, suggesting the synergies between two tasks. The BioInstruct dataset serves as a valuable resource and instruction tuned LLMs lead to the best performing BioNLP applications.

Incorporating inductive biases into ML models is an active area of ML research, especially when ML models are applied to data about the physical world. Equivariant Graph Neural Networks (GNNs) have recently become a popular method for learning from physics data because they directly incorporate the symmetries of the underlying physical system. Drawing from the relevant literature around group equivariant networks, this paper presents a comprehensive evaluation of the proposed benefits of equivariant GNNs by using real-world particle physics reconstruction tasks as an evaluation test-bed. We demonstrate that many of the theoretical benefits generally associated with equivariant networks may not hold for realistic systems and introduce compelling directions for future research that will benefit both the scientific theory of ML and physics applications.

The Cancer Registry of Norway (CRN) collects, curates, and manages data related to cancer patients in Norway, supported by an interactive, human-in-the-loop, socio-technical decision support software system. Automated software testing of this software system is inevitable; however, currently, it is limited in CRN's practice. To this end, we present an industrial case study to evaluate an AI-based system-level testing tool, i.e., EvoMaster, in terms of its effectiveness in testing CRN's software system. In particular, we focus on GURI, CRN's medical rule engine, which is a key component at the CRN. We test GURI with EvoMaster's black-box and white-box tools and study their test effectiveness regarding code coverage, errors found, and domain-specific rule coverage. The results show that all EvoMaster tools achieve a similar code coverage; i.e., around 19% line, 13% branch, and 20% method; and find a similar number of errors; i.e., 1 in GURI's code. Concerning domain-specific coverage, EvoMaster's black-box tool is the most effective in generating tests that lead to applied rules; i.e., 100% of the aggregation rules and between 12.86% and 25.81% of the validation rules; and to diverse rule execution results; i.e., 86.84% to 89.95% of the aggregation rules and 0.93% to 1.72% of the validation rules pass, and 1.70% to 3.12% of the aggregation rules and 1.58% to 3.74% of the validation rules fail. We further observe that the results are consistent across 10 versions of the rules. Based on these results, we recommend using EvoMaster's black-box tool to test GURI since it provides good results and advances the current state of practice at the CRN. Nonetheless, EvoMaster needs to be extended to employ domain-specific optimization objectives to improve test effectiveness further. Finally, we conclude with lessons learned and potential research directions, which we believe are generally applicable.

Consider public health officials aiming to spread awareness about a new vaccine in a community interconnected by a social network. How can they distribute information with minimal resources, ensuring community-wide understanding that aligns with the actual facts? This concern mirrors numerous real-world situations. In this paper, we initialize the study of sample complexity in opinion formation to solve this problem. Our model is built on the recognized opinion formation game, where we regard each agent's opinion as a data-derived model parameter, not just a real number as in prior studies. Such an extension offers a wider understanding of opinion formation and ties closely with federated learning. Through this formulation, we characterize the sample complexity bounds for any network and also show asymptotically tight bounds for specific network structures. Intriguingly, we discover optimal strategies often allocate samples inversely to the degree, hinting at vital policy implications. Our findings are empirically validated on both synthesized and real-world networks.

The acuity state of patients in the intensive care unit (ICU) can quickly change from stable to unstable, sometimes leading to life-threatening conditions. Early detection of deteriorating conditions can result in providing more timely interventions and improved survival rates. Current approaches rely on manual daily assessments. Some data-driven approaches have been developed, that use mortality as a proxy of acuity in the ICU. However, these methods do not integrate acuity states to determine the stability of a patient or the need for life-sustaining therapies. In this study, we propose APRICOT (Acuity Prediction in Intensive Care Unit), a Transformer-based neural network to predict acuity state in real-time in ICU patients. We develop and extensively validate externally, temporally, and prospectively the APRICOT model on three large datasets: University of Florida Health (UFH), eICU Collaborative Research Database (eICU), and Medical Information Mart for Intensive Care (MIMIC)-IV. The performance of APRICOT shows comparable results to state-of-the-art mortality prediction models (external AUROC 0.93-0.93, temporal AUROC 0.96-0.98, and prospective AUROC 0.98) as well as acuity prediction models (external AUROC 0.80-0.81, temporal AUROC 0.77-0.78, and prospective AUROC 0.87). Furthermore, APRICOT can make predictions for the need for life-sustaining therapies, showing comparable results to state-of-the-art ventilation prediction models (external AUROC 0.80-0.81, temporal AUROC 0.87-0.88, and prospective AUROC 0.85), and vasopressor prediction models (external AUROC 0.82-0.83, temporal AUROC 0.73-0.75, prospective AUROC 0.87). This tool allows for real-time acuity monitoring of a patient and can provide helpful information to clinicians to make timely interventions. Furthermore, the model can suggest life-sustaining therapies that the patient might need in the next hours in the ICU.

In many applications, e.g. in healthcare and e-commerce, the goal of a contextual bandit may be to learn an optimal treatment assignment policy at the end of the experiment. That is, to minimize simple regret. However, this objective remains understudied. We propose a new family of computationally efficient bandit algorithms for the stochastic contextual bandit setting, where a tuning parameter determines the weight placed on cumulative regret minimization (where we establish near-optimal minimax guarantees) versus simple regret minimization (where we establish state-of-the-art guarantees). Our algorithms work with any function class, are robust to model misspecification, and can be used in continuous arm settings. This flexibility comes from constructing and relying on "conformal arm sets" (CASs). CASs provide a set of arms for every context, encompassing the context-specific optimal arm with a certain probability across the context distribution. Our positive results on simple and cumulative regret guarantees are contrasted with a negative result, which shows that no algorithm can achieve instance-dependent simple regret guarantees while simultaneously achieving minimax optimal cumulative regret guarantees.

The presence of detailed clinical information in electronic health record (EHR) systems presents promising prospects for enhancing patient care through automated retrieval techniques. Nevertheless, it is widely acknowledged that accessing data within EHRs is hindered by various methodological challenges. Specifically, the clinical notes stored in EHRs are composed in a narrative form, making them prone to ambiguous formulations and highly unstructured data presentations, while structured reports commonly suffer from missing and/or erroneous data entries. This inherent complexity poses significant challenges when attempting automated large-scale medical knowledge extraction tasks, necessitating the application of advanced tools, such as natural language processing (NLP), as well as data audit techniques. This work aims to address these obstacles by creating and validating a novel pipeline designed to extract relevant data pertaining to prostate cancer patients. The objective is to exploit the inherent redundancies available within the integrated structured and unstructured data entries within EHRs in order to generate comprehensive and reliable medical databases, ready to be used in advanced research studies. Additionally, the study explores potential opportunities arising from these data, offering valuable prospects for advancing research in prostate cancer.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

北京阿比特科技有限公司