亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present two methods for bounding the probabilities of benefit and harm under unmeasured confounding. The first method computes the (upper or lower) bound of either probability as a function of the observed data distribution and two intuitive sensitivity parameters which, then, can be presented to the analyst as a 2-D plot to assist her in decision making. The second method assumes the existence of a measured nondifferential proxy (i.e., direct effect) of the unmeasured confounder. Using this proxy, tighter bounds than the existing ones can be derived from just the observed data distribution.

相關內容

The algorithm of Tutte for constructing convex planar straight-line drawings and the algorithm of Floater and Gotsman for constructing planar straight-line morphs are among the most popular graph drawing algorithms. Quite surprisingly, little is known about the resolution of the drawings produced by these algorithms. In this paper, focusing on maximal plane graphs, we prove tight bounds on the resolution of the planar straight-line drawings produced by Floater's algorithm, which is a broad generalization of Tutte's algorithm. Further, we use such a result in order to prove a lower bound on the resolution of the drawings of maximal plane graphs produced by Floater and Gotsman's morphing algorithm. Finally, we show that such a morphing algorithm might produce drawings with exponentially-small resolution, even when transforming drawings with polynomial resolution.

Substantial experiments have validated the success of Batch Normalization (BN) Layer in benefiting convergence and generalization. However, BN requires extra memory and float-point calculation. Moreover, BN would be inaccurate on micro-batch, as it depends on batch statistics. In this paper, we address these problems by simplifying BN regularization while keeping two fundamental impacts of BN layers, i.e., data decorrelation and adaptive learning rate. We propose a novel normalization method, named MimicNorm, to improve the convergence and efficiency in network training. MimicNorm consists of only two light operations, including modified weight mean operations (subtract mean values from weight parameter tensor) and one BN layer before loss function (last BN layer). We leverage the neural tangent kernel (NTK) theory to prove that our weight mean operation whitens activations and transits network into the chaotic regime like BN layer, and consequently, leads to an enhanced convergence. The last BN layer provides autotuned learning rates and also improves accuracy. Experimental results show that MimicNorm achieves similar accuracy for various network structures, including ResNets and lightweight networks like ShuffleNet, with a reduction of about 20% memory consumption. The code is publicly available at //github.com/Kid-key/MimicNorm.

We present a comprehensive evaluation of the robustness and explainability of ResNet-like models in the context of Unintended Radiated Emission (URE) classification and suggest a new approach leveraging Neural Stochastic Differential Equations (SDEs) to address identified limitations. We provide an empirical demonstration of the fragility of ResNet-like models to Gaussian noise perturbations, where the model performance deteriorates sharply and its F1-score drops to near insignificance at 0.008 with a Gaussian noise of only 0.5 standard deviation. We also highlight a concerning discrepancy where the explanations provided by ResNet-like models do not reflect the inherent periodicity in the input data, a crucial attribute in URE detection from stable devices. In response to these findings, we propose a novel application of Neural SDEs to build models for URE classification that are not only robust to noise but also provide more meaningful and intuitive explanations. Neural SDE models maintain a high F1-score of 0.93 even when exposed to Gaussian noise with a standard deviation of 0.5, demonstrating superior resilience to ResNet models. Neural SDE models successfully recover the time-invariant or periodic horizontal bands from the input data, a feature that was conspicuously missing in the explanations generated by ResNet-like models. This advancement presents a small but significant step in the development of robust and interpretable models for real-world URE applications where data is inherently noisy and assurance arguments demand interpretable machine learning predictions.

The energy efficiency of analog forms of computing makes it one of the most promising candidates to deploy resource-hungry machine learning tasks on resource-constrained system such as mobile or embedded devices. However, it is well known that for analog computations the safety net of discretization is missing, thus all analog computations are exposed to a variety of imperfections of corresponding implementations. Examples include non-linearities, saturation effect and various forms of noise. In this work, we observe that the ordering of input operands of an analog operation also has an impact on the output result, which essentially makes analog computations non-associative, even though the underlying operation might be mathematically associative. We conduct a simple test by creating a model of a real analog processor which captures such ordering effects. With this model we assess the importance of ordering by comparing the test accuracy of a neural network for keyword spotting, which is trained based either on an ordered model, on a non-ordered variant, and on real hardware. The results prove the existence of ordering effects as well as their high impact, as neglecting ordering results in substantial accuracy drops.

Multi-genre speaker recognition is becoming increasingly popular due to its ability to better represent the complexities of real-world applications. However, a major challenge is the significant shift in the distribution of speaker vectors across different genres. While distribution alignment is a common approach to address this challenge, previous studies have mainly focused on aligning a source domain with a target domain, and the performance of multi-genre data is unknown. This paper presents a comprehensive study of mainstream distribution alignment methods on multi-genre data, where multiple distributions need to be aligned. We analyze various methods both qualitatively and quantitatively. Our experiments on the CN-Celeb dataset show that within-between distribution alignment (WBDA) performs relatively better. However, we also found that none of the investigated methods consistently improved performance in all test cases. This suggests that solely aligning the distributions of speaker vectors may not fully address the challenges posed by multi-genre speaker recognition. Further investigation is necessary to develop a more comprehensive solution.

This tutorial demonstrates workflows to incorporate text data into actuarial classification and regression tasks. The main focus is on methods employing transformer-based models. A dataset of car accident descriptions with an average length of 400 words, available in English and German, and a dataset with short property insurance claims descriptions are used to demonstrate these techniques. The case studies tackle challenges related to a multi-lingual setting and long input sequences. They also show ways to interpret model output, to assess and improve model performance, by fine-tuning the models to the domain of application or to a specific prediction task. Finally, the tutorial provides practical approaches to handle classification tasks in situations with no or only few labeled data, including but not limited to ChatGPT. The results achieved by using the language-understanding skills of off-the-shelf natural language processing (NLP) models with only minimal pre-processing and fine-tuning clearly demonstrate the power of transfer learning for practical applications.

We provide the first convergence guarantee for full black-box variational inference (BBVI), also known as Monte Carlo variational inference. While preliminary investigations worked on simplified versions of BBVI (e.g., bounded domain, bounded support, only optimizing for the scale, and such), our setup does not need any such algorithmic modifications. Our results hold for log-smooth posterior densities with and without strong log-concavity and the location-scale variational family. Also, our analysis reveals that certain algorithm design choices commonly employed in practice, particularly, nonlinear parameterizations of the scale of the variational approximation, can result in suboptimal convergence rates. Fortunately, running BBVI with proximal stochastic gradient descent fixes these limitations, and thus achieves the strongest known convergence rate guarantees. We evaluate this theoretical insight by comparing proximal SGD against other standard implementations of BBVI on large-scale Bayesian inference problems.

6G promises a paradigm shift in which positioning and sensing are inherently integrated, enhancing not only the communication performance but also enabling location- and context-aware services. Historically, positioning and sensing have been viewed through the lens of cost and performance trade-offs, implying an escalated demand for resources, such as radio, physical, and computational resources, for improved performance. However, 6G goes beyond this traditional perspective to encompass a set of broader values, namely sustainability, inclusiveness, and trustworthiness. This paper aims to: (i) shed light on these important value indicators and their relationship with the conventional key performance indicators, and (ii) unveil the dual nature of 6G in relation to these key value indicators (i.e., ensuring operation according to the values and enabling services that affect the values).

Social choice functions help aggregate individual preferences while differentially private mechanisms provide formal privacy guarantees to release answers of queries operating on sensitive data. However, preserving differential privacy requires introducing noise to the system, and therefore may lead to undesired byproducts. Does an increase in the level of differential privacy for releasing the outputs of social choice functions increase or decrease the level of influence and welfare, and at what rate? In this paper, we mainly address this question in more precise terms in a referendum setting with two candidates when the celebrated randomized response mechanism is used. We show that there is an inversely-proportional relation between welfare and privacy, and also influence and privacy.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司