Population protocols are a class of algorithms for modeling distributed computation in networks of finite-state agents communicating through pairwise interactions. Their suitability for analyzing numerous chemical processes has motivated the adaptation of the original population protocol framework to better model these chemical systems. In this paper, we further the study of two such adaptations in the context of solving approximate majority: persistent-state agents (or catalysts) and spontaneous state changes (or leaks). Based on models considered in recent protocols for populations with persistent-state agents, we assume a population with $n$ catalytic input agents and $m$ worker agents, and the goal of the worker agents is to compute some predicate over the states of the catalytic inputs. We call this model the Catalytic Input (CI) model. For $m = \Theta(n)$, we show that computing the exact majority of the input population with high probability requires at least $\Omega(n^2)$ total interactions, demonstrating a strong separation between the CI model and the standard population protocol model. On the other hand, we show that the simple third-state dynamics of Angluin et al. for approximate majority in the standard model can be naturally adapted to the CI model: we present such a constant-state protocol for the CI model that solves approximate majority in $O(n \log n)$ total steps w.h.p. when the input margin is $\Omega(\sqrt{n \log n})$. We then show the robustness of third-state dynamics protocols to the transient leaks events introduced by Alistarh et al. In both the original and CI models, these protocols successfully compute approximate majority with high probability in the presence of leaks occurring at each step with probability $\beta \leq O\left(\sqrt{n \log n}/n\right)$, exhibiting a resilience to leaks similar to that of Byzantine agents in previous works.
The problem of constrained reinforcement learning (CRL) holds significant importance as it provides a framework for addressing critical safety satisfaction concerns in the field of reinforcement learning (RL). However, with the introduction of constraint satisfaction, the current CRL methods necessitate the utilization of second-order optimization or primal-dual frameworks with additional Lagrangian multipliers, resulting in increased complexity and inefficiency during implementation. To address these issues, we propose a novel first-order feasible method named Constrained Proximal Policy Optimization (CPPO). By treating the CRL problem as a probabilistic inference problem, our approach integrates the Expectation-Maximization framework to solve it through two steps: 1) calculating the optimal policy distribution within the feasible region (E-step), and 2) conducting a first-order update to adjust the current policy towards the optimal policy obtained in the E-step (M-step). We establish the relationship between the probability ratios and KL divergence to convert the E-step into a convex optimization problem. Furthermore, we develop an iterative heuristic algorithm from a geometric perspective to solve this problem. Additionally, we introduce a conservative update mechanism to overcome the constraint violation issue that occurs in the existing feasible region method. Empirical evaluations conducted in complex and uncertain environments validate the effectiveness of our proposed method, as it performs at least as well as other baselines.
This paper adopts a tool from computational topology, the Euler characteristic curve (ECC) of a sample, to perform one- and two-sample goodness of fit tests, we call TopoTests. The presented tests work for samples in arbitrary dimension, having comparable power to the state of the art tests in the one dimensional case. It is demonstrated that the type I error of TopoTests can be controlled and their type II error vanishes exponentially with increasing sample size. Extensive numerical simulations of TopoTests are conducted to demonstrate their power.
Wearable devices permit the continuous monitoring of biological processes, such as blood glucose metabolism, and behavior, such as sleep quality and physical activity. The continuous monitoring often occurs in epochs of 60 seconds over multiple days, resulting in high dimensional longitudinal curves that are best described and analyzed as functional data. From this perspective, the functional data are smooth, latent functions obtained at discrete time intervals and prone to homoscedastic white noise. However, the assumption of homoscedastic errors might not be appropriate in this setting because the devices collect the data serially. While researchers have previously addressed measurement error in scalar covariates prone to errors, less work has been done on correcting measurement error in high dimensional longitudinal curves prone to heteroscedastic errors. We present two new methods for correcting measurement error in longitudinal functional curves prone to complex measurement error structures in multi-level generalized functional linear regression models. These methods are based on two-stage scalable regression calibration. We assume that the distribution of the scalar responses and the surrogate measures prone to heteroscedastic errors both belong in the exponential family and that the measurement errors follow Gaussian processes. In simulations and sensitivity analyses, we established some finite sample properties of these methods. In our simulations, both regression calibration methods for correcting measurement error performed better than estimators based on averaging the longitudinal functional data and using observations from a single day. We also applied the methods to assess the relationship between physical activity and type 2 diabetes in community dwelling adults in the United States who participated in the National Health and Nutrition Examination Survey.
This paper interprets the stabilized finite element method via residual minimization as a variational multiscale method. We approximate the solution to the partial differential equations using two discrete spaces that we build on a triangulation of the domain; we denote these spaces as coarse and enriched spaces. Building on the adaptive stabilized finite element method via residual minimization, we find a coarse-scale approximation in a continuous space by minimizing the residual on a dual discontinuous Galerkin norm; this process allows us to compute a robust error estimate to construct an on-the-fly adaptive method. We reinterpret the residual projection using the variational multiscale framework to derive a fine-scale approximation. As a result, on each mesh of the adaptive process, we obtain stable coarse- and fine-scale solutions derived from a symmetric saddle-point formulation and an a-posteriori error indicator to guide automatic adaptivity. We test our framework in several challenging scenarios for linear and nonlinear convection-dominated diffusion problems to demonstrate the framework's performance in providing stability in the solution with optimal convergence rates in the asymptotic regime and robust performance in the pre-asymptotic regime. Lastly, we introduce a heuristic dual-term contribution in the variational form to improve the full-scale approximation for symmetric formulations (e.g., diffusion problem).
When comparing two independent groups, shift functions are basically techniques that compare multiple quantiles rather than a single measure of location, the goal being to get a more detailed understanding of how the distributions differ. Various versions have been proposed and studied. This paper deals with extensions of these methods to main effects and interactions in a between-by-between, 2-by-2 design. Two approaches are studied, one that compares the deciles of the distributions, and one that has a certain connection to the Wilcoxon-Mann-Whitney method. For both methods, we propose an implementation using the Harrell-Davis quantile estimator, used in conjunction with a percentile bootstrap approach. We report results of simulations of false and true positive rates.
We present an effective framework for improving the breakdown point of robust regression algorithms. Robust regression has attracted widespread attention due to the ubiquity of outliers, which significantly affect the estimation results. However, many existing robust least-squares regression algorithms suffer from a low breakdown point, as they become stuck around local optima when facing severe attacks. By expanding on the previous work, we propose a novel framework that enhances the breakdown point of these algorithms by inserting a prior distribution in each iteration step, and adjusting the prior distribution according to historical information. We apply this framework to a specific algorithm and derive the consistent robust regression algorithm with iterative local search (CORALS). The relationship between CORALS and momentum gradient descent is described, and a detailed proof of the theoretical convergence of CORALS is presented. Finally, we demonstrate that the breakdown point of CORALS is indeed higher than that of the algorithm from which it is derived. We apply the proposed framework to other robust algorithms, and show that the improved algorithms achieve better results than the original algorithms, indicating the effectiveness of the proposed framework.
Recently, there has been a growing interest in efficient numerical algorithms based on tensor networks and low-rank techniques to approximate high-dimensional functions and solutions to high-dimensional PDEs. In this paper, we propose a new tensor rank reduction method based on coordinate transformations that can greatly increase the efficiency of high-dimensional tensor approximation algorithms. The idea is simple: given a multivariate function, determine a coordinate transformation so that the function in the new coordinate system has smaller tensor rank. We restrict our analysis to linear coordinate transformations, which gives rise to a new class of functions that we refer to as tensor ridge functions. Leveraging Riemannian gradient descent on matrix manifolds we develop an algorithm that determines a quasi-optimal linear coordinate transformation for tensor rank reduction.The results we present for rank reduction via linear coordinate transformations open the possibility for generalizations to larger classes of nonlinear transformations. Numerical applications are presented and discussed for linear and nonlinear PDEs.
A nonlinear sea-ice problem is considered in a least-squares finite element setting. The corresponding variational formulation approximating simultaneously the stress tensor and the velocity is analysed. In particular, the least-squares functional is coercive and continuous in an appropriate solution space and this proves the well-posedness of the problem. As the method does not require a compatibility condition between the finite element space, the formulation allows the use of piecewise polynomial spaces of the same approximation order for both the stress and the velocity approximations. A Newton-type iterative method is used to linearize the problem and numerical tests are provided to illustrate the theory.
Finding an agreement among diverse opinions is a challenging topic in multiagent systems. Recently, large language models (LLMs) have shown great potential in addressing this challenge due to their remarkable capabilities in comprehending human opinions and generating human-like text. However, they typically rely on extensive human-annotated data. In this paper, we propose Self-Agreement, a novel framework for fine-tuning LLMs to autonomously find agreement using data generated by LLM itself. Specifically, our approach employs the generative pre-trained transformer-3 (GPT-3) to generate multiple opinions for each question in a question dataset and create several agreement candidates among these opinions. Then, a bidirectional encoder representations from transformers (BERT)-based model evaluates the agreement score of each agreement candidate and selects the one with the highest agreement score. This process yields a dataset of question-opinion-agreements, which we use to fine-tune a pre-trained LLM for discovering agreements among diverse opinions. Remarkably, a pre-trained LLM fine-tuned by our Self-Agreement framework achieves comparable performance to GPT-3 with only 1/25 of its parameters, showcasing its ability to identify agreement among various opinions without the need for human-annotated data.
This article proposes a meta-learning method for estimating the conditional average treatment effect (CATE) from a few observational data. The proposed method learns how to estimate CATEs from multiple tasks and uses the knowledge for unseen tasks. In the proposed method, based on the meta-learner framework, we decompose the CATE estimation problem into sub-problems. For each sub-problem, we formulate our estimation models using neural networks with task-shared and task-specific parameters. With our formulation, we can obtain optimal task-specific parameters in a closed form that are differentiable with respect to task-shared parameters, making it possible to perform effective meta-learning. The task-shared parameters are trained such that the expected CATE estimation performance in few-shot settings is improved by minimizing the difference between a CATE estimated with a large amount of data and one estimated with just a few data. Our experimental results demonstrate that our method outperforms the existing meta-learning approaches and CATE estimation methods.