亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Electric Vehicles (EVs) are spreading fast as they promise to provide better performances and comfort, but above all, to help facing climate change. Despite their success, their cost is still a challenge. One of the most expensive components of EVs is lithium-ion batteries, which became the standard for energy storage in a wide range of applications. Precisely estimating the Remaining Useful Life (RUL) of battery packs can open to their reuse and thus help to reduce the cost of EVs and improve sustainability. A correct RUL estimation can be used to quantify the residual market value of the battery pack. The customer can then decide to sell the battery when it still has a value, i.e., before it exceeds its end of life of the target application and can still be reused in a second domain without compromising safety and reliability. In this paper, we propose to use a Deep Learning approach based on LSTMs and Autoencoders to estimate the RUL of li-ion batteries. Compared to what has been proposed so far in the literature, we employ measures to ensure the applicability of the method also in the real deployed application. Such measures include (1) avoid using non-measurable variables as input, (2) employ appropriate datasets with wide variability and different conditions, (3) do not use cycles to define the RUL.

相關內容

The need to approximate functions is ubiquitous in science, either due to empirical constraints or high computational cost of accessing the function. In high-energy physics, the precise computation of the scattering cross-section of a process requires the evaluation of computationally intensive integrals. A wide variety of methods in machine learning have been used to tackle this problem, but often the motivation of using one method over another is lacking. Comparing these methods is typically highly dependent on the problem at hand, so we specify to the case where we can evaluate the function a large number of times, after which quick and accurate evaluation can take place. We consider four interpolation and three machine learning techniques and compare their performance on three toy functions, the four-point scalar Passarino-Veltman $D_0$ function, and the two-loop self-energy master integral $M$. We find that in low dimensions ($d = 3$), traditional interpolation techniques like the Radial Basis Function perform very well, but in higher dimensions ($d=5, 6, 9$) we find that multi-layer perceptrons (a.k.a neural networks) do not suffer as much from the curse of dimensionality and provide the fastest and most accurate predictions.

One of the key criticisms of deep learning is that large amounts of expensive and difficult-to-acquire training data are required in order to train models with high performance and good generalization capabilities. Focusing on the task of monocular camera pose estimation via scene coordinate regression (SCR), we describe a novel method, Domain Adaptation of Networks for Camera pose Estimation (DANCE), which enables the training of models without access to any labels on the target task. DANCE requires unlabeled images (without known poses, ordering, or scene coordinate labels) and a 3D representation of the space (e.g., a scanned point cloud), both of which can be captured with minimal effort using off-the-shelf commodity hardware. DANCE renders labeled synthetic images from the 3D model, and bridges the inevitable domain gap between synthetic and real images by applying unsupervised image-level domain adaptation techniques (unpaired image-to-image translation). When tested on real images, the SCR model trained with DANCE achieved comparable performance to its fully supervised counterpart (in both cases using PnP-RANSAC for final pose estimation) at a fraction of the cost. Our code and dataset are available at //github.com/JackLangerman/dance

Beta regression model is useful in the analysis of bounded continuous outcomes such as proportions. It is well known that for any regression model, the presence of multicollinearity leads to poor performance of the maximum likelihood estimators. The ridge type estimators have been proposed to alleviate the adverse effects of the multicollinearity. Furthermore, when some of the predictors have insignificant or weak effects on the outcomes, it is desired to recover as much information as possible from these predictors instead of discarding them all together. In this paper we proposed ridge type shrinkage estimators for the low and high dimensional beta regression model, which address the above two issues simultaneously. We compute the biases and variances of the proposed estimators in closed forms and use Monte Carlo simulations to evaluate their performances. The results show that, both in low and high dimensional data, the performance of the proposed estimators are superior to ridge estimators that discard weak or insignificant predictors. We conclude this paper by applying the proposed methods for two real data from econometric and medicine.

Semiconductor device models are essential to understand the charge transport in thin film transistors (TFTs). Using these TFT models to draw inference involves estimating parameters used to fit to the experimental data. These experimental data can involve extracted charge carrier mobility or measured current. Estimating these parameters help us draw inferences about device performance. Fitting a TFT model for a given experimental data using the model parameters relies on manual fine tuning of multiple parameters by human experts. Several of these parameters may have confounding effects on the experimental data, making their individual effect extraction a non-intuitive process during manual tuning. To avoid this convoluted process, we propose a new method for automating the model parameter extraction process resulting in an accurate model fitting. In this work, model choice based approximate Bayesian computation (aBc) is used for generating the posterior distribution of the estimated parameters using observed mobility at various gate voltage values. Furthermore, it is shown that the extracted parameters can be accurately predicted from the mobility curves using gradient boosted trees. This work also provides a comparative analysis of the proposed framework with fine-tuned neural networks wherein the proposed framework is shown to perform better.

This paper considers the problem of estimating the information leakage of a system in the black-box scenario. It is assumed that the system's internals are unknown to the learner, or anyway too complicated to analyze, and the only available information are pairs of input-output data samples, possibly obtained by submitting queries to the system or provided by a third party. Previous research has mainly focused on counting the frequencies to estimate the input-output conditional probabilities (referred to as frequentist approach), however this method is not accurate when the domain of possible outputs is large. To overcome this difficulty, the estimation of the Bayes error of the ideal classifier was recently investigated using Machine Learning (ML) models and it has been shown to be more accurate thanks to the ability of those models to learn the input-output correspondence. However, the Bayes vulnerability is only suitable to describe one-try attacks. A more general and flexible measure of leakage is the g-vulnerability, which encompasses several different types of adversaries, with different goals and capabilities. In this paper, we propose a novel approach to perform black-box estimation of the g-vulnerability using ML. A feature of our approach is that it does not require to estimate the conditional probabilities, and that it is suitable for a large class of ML algorithms. First, we formally show the learnability for all data distributions. Then, we evaluate the performance via various experiments using k-Nearest Neighbors and Neural Networks. Our results outperform the frequentist approach when the observables domain is large.

The study of generalisation in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We provide a unifying formalism and terminology for discussing different generalisation problems, building upon previous works. We go on to categorise existing benchmarks for generalisation, as well as current methods for tackling the generalisation problem. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in generalisation, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for generalisation, and we recommend building benchmarks in underexplored problem settings such as offline RL generalisation and reward-function variation.

Click-through rate (CTR) estimation plays as a core function module in various personalized online services, including online advertising, recommender systems, and web search etc. From 2015, the success of deep learning started to benefit CTR estimation performance and now deep CTR models have been widely applied in many industrial platforms. In this survey, we provide a comprehensive review of deep learning models for CTR estimation tasks. First, we take a review of the transfer from shallow to deep CTR models and explain why going deep is a necessary trend of development. Second, we concentrate on explicit feature interaction learning modules of deep CTR models. Then, as an important perspective on large platforms with abundant user histories, deep behavior models are discussed. Moreover, the recently emerged automated methods for deep CTR architecture design are presented. Finally, we summarize the survey and discuss the future prospects of this field.

Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.

北京阿比特科技有限公司