亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating and inserting new objects into 3D content is a compelling approach for achieving versatile scene recreation. Existing methods, which rely on SDS optimization or single-view inpainting, often struggle to produce high-quality results. To address this, we propose a novel method for object insertion in 3D content represented by Gaussian Splatting. Our approach introduces a multi-view diffusion model, dubbed MVInpainter, which is built upon a pre-trained stable video diffusion model to facilitate view-consistent object inpainting. Within MVInpainter, we incorporate a ControlNet-based conditional injection module to enable controlled and more predictable multi-view generation. After generating the multi-view inpainted results, we further propose a mask-aware 3D reconstruction technique to refine Gaussian Splatting reconstruction from these sparse inpainted views. By leveraging these fabricate techniques, our approach yields diverse results, ensures view-consistent and harmonious insertions, and produces better object quality. Extensive experiments demonstrate that our approach outperforms existing methods.

相關內容

圖(tu)像(xiang)修復(fu)(英語:Inpainting)指重建的(de)(de)圖(tu)像(xiang)和視頻(pin)中(zhong)丟(diu)失或損壞(huai)的(de)(de)部(bu)分的(de)(de)過程。例如在博物館中(zhong),這(zhe)項工作(zuo)常由經驗豐富(fu)的(de)(de)博物館管理員(yuan)或者藝術品(pin)修復(fu)師來(lai)(lai)進行。數碼世界中(zhong),圖(tu)像(xiang)修復(fu)又(you)稱圖(tu)像(xiang)插值或視頻(pin)插值,指利用復(fu)雜(za)的(de)(de)算(suan)法來(lai)(lai)替換已丟(diu)失、損壞(huai)的(de)(de)圖(tu)像(xiang)數據,主要替換一些小區域和瑕疵。

Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work (Zou et al., 2023; Mazeika et al., 2023, 2024) -- which align with OpenAI's usage policies; (3) a standardized evaluation framework at //github.com/JailbreakBench/jailbreakbench that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard at //jailbreakbench.github.io/ that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community.

Text-guided diffusion models have revolutionized generative tasks by producing high-fidelity content from text descriptions. They have also enabled an editing paradigm where concepts can be replaced through text conditioning (e.g., a dog to a tiger). In this work, we explore a novel approach: instead of replacing a concept, can we enhance or suppress the concept itself? Through an empirical study, we identify a trend where concepts can be decomposed in text-guided diffusion models. Leveraging this insight, we introduce ScalingConcept, a simple yet effective method to scale decomposed concepts up or down in real input without introducing new elements. To systematically evaluate our approach, we present the WeakConcept-10 dataset, where concepts are imperfect and need to be enhanced. More importantly, ScalingConcept enables a variety of novel zero-shot applications across image and audio domains, including tasks such as canonical pose generation and generative sound highlighting or removal.

In a real-time transmission scenario, messages are transmitted through a channel that is subject to packet loss. The destination must recover the messages within the required deadline. In this paper, we consider a setup where two different types of messages with distinct decoding deadlines are transmitted through a channel model that introduces either one burst erasure of length at most $B$, or $N$ random erasures in any fixed-sized sliding window. The message with a short decoding deadline $T_{\mathrm{u}}$ is referred to as an urgent message, while the other one with a decoding deadline $T_{\mathrm{v}}$ ($T_{\mathrm{v}} > T_{\mathrm{u}}$) is referred to as a less urgent message. We consider the scenario where $T_{\mathrm{v}} > T_{\mathrm{u}} + B$ and propose a non-trivial achievable region $\mathcal{R}$ for the aforementioned channel model. We propose a novel merging approach to encode two message streams of different urgency levels into a single flow and present explicit constructions for encoding, contributing to the establishment of the achievability of region $\mathcal{R}$. Our comprehensive analysis demonstrates that this region encompasses the rate pairs of existing encoding schemes and coincides with the capacity region in burst channel scenarios. Lastly, we investigate the property of the achievable region $\mathcal{R}$, proving that it is the largest one obtained from all the rate pairs under the merging method.

Visual content and accompanied audio signals naturally formulate a joint representation to improve audio-visual (AV) related applications. While studies develop various AV representation learning frameworks, the importance of AV data alignment is usually undermined for achieving high-quality representation. We observe that an audio signal may contain background noise interference. Also, non-synchronization may appear between audio and video streams. These non-strict data alignment limits representation quality and downgrade application performance. In this paper, we propose to improve AV joint representations from a data-centric perspective by aligning audio signals to visual data. Our alignment is conducted in an agentic workflow controlled by an LLM-based assistant named AVAgent. For each input AV data pair, our AVAgent uses a multi-modal LLM to convert audio and visual data into language descriptions separately (i.e., tool use). Then, AVAgent reasons whether this paired data is aligned well and plans to edit the audio signal if needed (i.e., planning). The audio editing is executed by predefined actions that filter noise or augment data. Moreover, we use a VLM to evaluate how modified audio signals match the visual content and provide feedback to AVAgent (i.e., reflection). The tool use, planning, and reflection steps operate cyclically to become an agentic workflow where audio signals are gradually aligned to visual content. To this end, existing methods can directly leverage the aligned AV data via our agentic workflow to improve AV joint representations. The experimental results comprehensively demonstrate the state-of-the-art performance of the proposed approach against previous baselines in diverse downstream tasks.

User intentions are typically formalized as evaluation rewards to be maximized when fine-tuning language models (LMs). Existing alignment methods, such as Direct Preference Optimization (DPO), are mainly tailored for pairwise preference data where rewards are implicitly defined rather than explicitly given. In this paper, we introduce a general framework for LM alignment, leveraging Noise Contrastive Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. Our framework comprises two parallel algorithms, NCA and InfoNCA, both enabling the direct extraction of an LM policy from reward data as well as preference data. Notably, we show that the DPO loss is a special case of our proposed InfoNCA objective under pairwise preference settings, thereby integrating and extending current alignment theories. By comparing NCA and InfoNCA, we demonstrate that the well-observed decreasing-likelihood trend of DPO/InfoNCA is caused by their focus on adjusting relative likelihood across different responses. In contrast, NCA optimizes the absolute likelihood for each response, thereby effectively preventing the chosen likelihood from decreasing. We evaluate our methods in both reward and preference settings with Mistral-8*7B and 7B models. Experiments suggest that InfoNCA/NCA surpasses various preference baselines when reward datasets are available. We also find NCA significantly outperforms DPO in complex reasoning tasks like math and coding.

To develop high-performing Visual Language Models (VLMs), it is essential to prepare multimodal resources, such as image-text pairs, interleaved data, and instruction data. While multimodal resources for English are abundant, there is a significant lack of corresponding resources for non-English languages, such as Japanese. To address this problem, we take Japanese as a non-English language and propose a method for rapidly creating Japanese multimodal datasets from scratch. We collect Japanese image-text pairs and interleaved data from web archives and generate Japanese instruction data directly from images using an existing VLM. Our experimental results show that a VLM trained on these native datasets outperforms those relying on machine-translated content.

The applications of generative AI have become extremely impressive, and the interplay between users and AI is even more so. Current human-AI interaction literature has taken a broad look at how humans interact with generative AI, but it lacks specificity regarding the user interface designs and patterns used to create these applications. Therefore, we present a survey that comprehensively presents taxonomies of how a human interacts with AI and the user interaction patterns designed to meet the needs of a variety of relevant use cases. We focus primarily on user-guided interactions, surveying interactions that are initiated by the user and do not include any implicit signals given by the user. With this survey, we aim to create a compendium of different user-interaction patterns that can be used as a reference for designers and developers alike. In doing so, we also strive to lower the entry barrier for those attempting to learn more about the design of generative AI applications.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司