Semitopologies model consensus in distributed system by equating the notion of a quorum -- a set of participants sufficient to make local progress -- with that of an open set. This yields a topology-like theory of consensus, but semitopologies generalise topologies, since the intersection of two quorums need not necessarily be a quorum. The semitopological model of consensus is naturally heterogeneous and local, just like topologies can be heterogenous and local, and for the same reasons: points may have different quorums and there is no restriction that open sets / quorums be uniformly generated (e.g. open sets can be something other than two-thirds majorities of the points in the space). Semiframes are an algebraic abstraction of semitopologies. They are to semitopologies as frames are to topologies. We give a notion of semifilter, which plays a role analogous to filters, and show how to build a semiframe out of the open sets of a semitopology, and a semitopology out of the semifilters of a semiframe. We define suitable notions of category and morphism and prove a categorical duality between (sober) semiframes and (spatial) semitopologies, and investigate well-behavedness properties on semitopologies and semiframes across the duality. Surprisingly, the structure of semiframes is not what one might initially expect just from looking at semitopologies, and the canonical structure required for the duality result -- a compatibility relation *, generalising sets intersection -- is also canonical for expressing well-behavedness properties. Overall, we deliver a new categorical, algebraic, abstract framework within which to study consensus on distributed systems, and which is also simply interesting to consider as a mathematical theory in its own right.
This paper proposes two algorithms to impose seepage boundary conditions in the context of Richards' equation for groundwater flows in unsaturated media. Seepage conditions are non-linear boundary conditions, that can be formulated as a set of unilateral constraints on both the pressure head and the water flux at the ground surface, together with a complementarity condition: these conditions in practice require switching between Neumann and Dirichlet boundary conditions on unknown portions on the boundary. Upon realizing the similarities of these conditions with unilateral contact problems in mechanics, we take inspiration from that literature to propose two approaches: the first method relies on a strongly consistent penalization term, whereas the second one is obtained by an hybridization approach, in which the value of the pressure on the surface is treated as a separate set of unknowns. The flow problem is discretized in mixed form with div-conforming elements so that the water mass is preserved. Numerical experiments show the validity of the proposed strategy in handling the seepage boundary conditions on geometries with increasing complexity.
We formulate and analyze a multiscale method for an elliptic problem with an oscillatory coefficient based on a skeletal (hybrid) formulation. More precisely, we employ hybrid discontinuous Galerkin approaches and combine them with the localized orthogonal decomposition methodology to obtain a coarse-scale skeletal method that effectively includes fine-scale information. This work is the first step in reliably merging hybrid skeletal formulations and localized orthogonal decomposition to unite the advantages of both strategies. Numerical experiments are presented to illustrate the theoretical findings.
We propose a topological mapping and localization system able to operate on real human colonoscopies, despite significant shape and illumination changes. The map is a graph where each node codes a colon location by a set of real images, while edges represent traversability between nodes. For close-in-time images, where scene changes are minor, place recognition can be successfully managed with the recent transformers-based local feature matching algorithms. However, under long-term changes -- such as different colonoscopies of the same patient -- feature-based matching fails. To address this, we train on real colonoscopies a deep global descriptor achieving high recall with significant changes in the scene. The addition of a Bayesian filter boosts the accuracy of long-term place recognition, enabling relocalization in a previously built map. Our experiments show that ColonMapper is able to autonomously build a map and localize against it in two important use cases: localization within the same colonoscopy or within different colonoscopies of the same patient. Code: //github.com/jmorlana/ColonMapper.
Mediation analyses allow researchers to quantify the effect of an exposure variable on an outcome variable through a mediator variable. If a binary mediator variable is misclassified, the resulting analysis can be severely biased. Misclassification is especially difficult to deal with when it is differential and when there are no gold standard labels available. Previous work has addressed this problem using a sensitivity analysis framework or by assuming that misclassification rates are known. We leverage a variable related to the misclassification mechanism to recover unbiased parameter estimates without using gold standard labels. The proposed methods require the reasonable assumption that the sum of the sensitivity and specificity is greater than 1. Three correction methods are presented: (1) an ordinary least squares correction for Normal outcome models, (2) a multi-step predictive value weighting method, and (3) a seamless expectation-maximization algorithm. We apply our misclassification correction strategies to investigate the mediating role of gestational hypertension on the association between maternal age and pre-term birth.
We consider a non-linear Bayesian data assimilation model for the periodic two-dimensional Navier-Stokes equations with initial condition modelled by a Gaussian process prior. We show that if the system is updated with sufficiently many discrete noisy measurements of the velocity field, then the posterior distribution eventually concentrates near the ground truth solution of the time evolution equation, and in particular that the initial condition is recovered consistently by the posterior mean vector field. We further show that the convergence rate can in general not be faster than inverse logarithmic in sample size, but describe specific conditions on the initial conditions when faster rates are possible. In the proofs we provide an explicit quantitative estimate for backward uniqueness of solutions of the two-dimensional Navier-Stokes equations.
We study the problem of computing the value function from a discretely-observed trajectory of a continuous-time diffusion process. We develop a new class of algorithms based on easily implementable numerical schemes that are compatible with discrete-time reinforcement learning (RL) with function approximation. We establish high-order numerical accuracy as well as the approximation error guarantees for the proposed approach. In contrast to discrete-time RL problems where the approximation factor depends on the effective horizon, we obtain a bounded approximation factor using the underlying elliptic structures, even if the effective horizon diverges to infinity.
We propose an extremely versatile approach to address a large family of matrix nearness problems, possibly with additional linear constraints. Our method is based on splitting a matrix nearness problem into two nested optimization problems, of which the inner one can be solved either exactly or cheaply, while the outer one can be recast as an unconstrained optimization task over a smooth real Riemannian manifold. We observe that this paradigm applies to many matrix nearness problems of practical interest appearing in the literature, thus revealing that they are equivalent in this sense to a Riemannian optimization problem. We also show that the objective function to be minimized on the Riemannian manifold can be discontinuous, thus requiring regularization techniques, and we give conditions for this to happen. Finally, we demonstrate the practical applicability of our method by implementing it for a number of matrix nearness problems that are relevant for applications and are currently considered very demanding in practice. Extensive numerical experiments demonstrate that our method often greatly outperforms its predecessors, including algorithms specifically designed for those particular problems.
This paper addresses second-order stochastic optimization for estimating the minimizer of a convex function written as an expectation. A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced. This approach enables to drastically reduces computational complexity. Above all, it allows to develop universal stochastic Newton methods and investigate the asymptotic efficiency of the proposed approach. This work so expands the application scope of secondorder algorithms in stochastic optimization.
This work explores multi-modal inference in a high-dimensional simplified model, analytically quantifying the performance gain of multi-modal inference over that of analyzing modalities in isolation. We present the Bayes-optimal performance and weak recovery thresholds in a model where the objective is to recover the latent structures from two noisy data matrices with correlated spikes. The paper derives the approximate message passing (AMP) algorithm for this model and characterizes its performance in the high-dimensional limit via the associated state evolution. The analysis holds for a broad range of priors and noise channels, which can differ across modalities. The linearization of AMP is compared numerically to the widely used partial least squares (PLS) and canonical correlation analysis (CCA) methods, which are both observed to suffer from a sub-optimal recovery threshold.
A numerical experiment based on a particle number-conserving quantum field theory is performed for two initially independent Bose-Einstein condensates that are coherently coupled at two temperatures. The present model illustrates ab initio that the initial relative phase of each of the two condensates doesn't remain random, but is distributed around integer multiple values of $2\pi$ from the interference and thermalization of forward and backward propagating matter waves at the Boltzmann equilibrium, that intrinsically measures zero average phases for each of the two independent condensates. Following this approach, focus is put on the original Gedanken experiment of Anderson on whether a Josephson current between two initially separated Bose-Einstein condensates occurs in a deterministic way or not, depending on the initial phase distribution.