In today's online advertising markets, a crucial requirement for an advertiser is to control her total expenditure within a time horizon under some budget. Among various budget control methods, throttling has emerged as a popular choice, managing an advertiser's total expenditure by selecting only a subset of auctions to participate in. This paper provides a theoretical panorama of a single advertiser's dynamic budget throttling process in repeated second-price auctions. We first establish a lower bound on the regret and an upper bound on the asymptotic competitive ratio for any throttling algorithm, respectively, when the advertiser's values are stochastic and adversarial. Regarding the algorithmic side, we propose the OGD-CB algorithm, which guarantees a near-optimal expected regret with stochastic values. On the other hand, when values are adversarial, we prove that this algorithm also reaches the upper bound on the asymptotic competitive ratio. We further compare throttling with pacing, another widely adopted budget control method, in repeated second-price auctions. In the stochastic case, we demonstrate that pacing is generally superior to throttling for the advertiser, supporting the well-known result that pacing is asymptotically optimal in this scenario. However, in the adversarial case, we give an exciting result indicating that throttling is also an asymptotically optimal dynamic bidding strategy. Our results bridge the gaps in theoretical research of throttling in repeated auctions and comprehensively reveal the ability of this popular budget-smoothing strategy.
Volumetric videos, benefiting from immersive 3D realism and interactivity, hold vast potential for various applications, while the tremendous data volume poses significant challenges for compression. Recently, NeRF has demonstrated remarkable potential in volumetric video compression thanks to its simple representation and powerful 3D modeling capabilities, where a notable work is ReRF. However, ReRF separates the modeling from compression process, resulting in suboptimal compression efficiency. In contrast, in this paper, we propose a volumetric video compression method based on dynamic NeRF in a more compact manner. Specifically, we decompose the NeRF representation into the coefficient fields and the basis fields, incrementally updating the basis fields in the temporal domain to achieve dynamic modeling. Additionally, we perform end-to-end joint optimization on the modeling and compression process to further improve the compression efficiency. Extensive experiments demonstrate that our method achieves higher compression efficiency compared to ReRF on various datasets.
The improvements on quantum technology are threatening our daily cybersecurity, as a capable quantum computer can break all currently employed asymmetric cryptosystems. In preparation for the quantum-era the National Institute of Standards and Technology (NIST) has initiated in 2016 a standardization process for public-key encryption (PKE) schemes, key-encapsulation mechanisms (KEM) and digital signature schemes. In 2023, NIST made an additional call for post-quantum signatures. With this chapter we aim at providing a survey on code-based cryptography, focusing on PKEs and signature schemes. We cover the main frameworks introduced in code-based cryptography and analyze their security assumptions. We provide the mathematical background in a lecture notes style, with the intention of reaching a wider audience.
Due to the data imbalance and the diversity of defects, student-teacher networks (S-T) are favored in unsupervised anomaly detection, which explores the discrepancy in feature representation derived from the knowledge distillation process to recognize anomalies. However, vanilla S-T network is not stable. Employing identical structures to construct the S-T network may weaken the representative discrepancy on anomalies. But using different structures can increase the likelihood of divergent performance on normal data. To address this problem, we propose a novel dual-student knowledge distillation (DSKD) architecture. Different from other S-T networks, we use two student networks a single pre-trained teacher network, where the students have the same scale but inverted structures. This framework can enhance the distillation effect to improve the consistency in recognition of normal data, and simultaneously introduce diversity for anomaly representation. To explore high-dimensional semantic information to capture anomaly clues, we employ two strategies. First, a pyramid matching mode is used to perform knowledge distillation on multi-scale feature maps in the intermediate layers of networks. Second, an interaction is facilitated between the two student networks through a deep feature embedding module, which is inspired by real-world group discussions. In terms of classification, we obtain pixel-wise anomaly segmentation maps by measuring the discrepancy between the output feature maps of the teacher and student networks, from which an anomaly score is computed for sample-wise determination. We evaluate DSKD on three benchmark datasets and probe the effects of internal modules through ablation experiments. The results demonstrate that DSKD can achieve exceptional performance on small models like ResNet18 and effectively improve vanilla S-T networks.
In credence goods markets such as health care or repair services, consumers rely on experts with superior information to adequately diagnose and treat them. Experts, however, are constrained in their diagnostic abilities, which hurts market efficiency and consumer welfare. Technological breakthroughs that substitute or complement expert judgments have the potential to alleviate consumer mistreatment. This article studies how competitive experts adopt novel diagnostic technologies when skills are heterogeneously distributed and obfuscated to consumers. We differentiate between novel technologies that increase expert abilities, and algorithmic decision aids that complement expert judgments, but do not affect an expert's personal diagnostic precision. We show that high-ability experts may be incentivized to forego the decision aid in order to escape a pooling equilibrium by differentiating themselves from low-ability experts. Results from an online experiment support our hypothesis, showing that high-ability experts are significantly less likely than low-ability experts to invest into an algorithmic decision aid. Furthermore, we document pervasive under-investments, and no effect on expert honesty.
The increasing usage of Artificial Intelligence (AI) models, especially Deep Neural Networks (DNNs), is increasing the power consumption during training and inference, posing environmental concerns and driving the need for more energy-efficient algorithms and hardware solutions. This work addresses the growing energy consumption problem in Machine Learning (ML), particularly during the inference phase. Even a slight reduction in power usage can lead to significant energy savings, benefiting users, companies, and the environment. Our approach focuses on maximizing the accuracy of Artificial Neural Network (ANN) models using a neuroevolutionary framework whilst minimizing their power consumption. To do so, power consumption is considered in the fitness function. We introduce a new mutation strategy that stochastically reintroduces modules of layers, with power-efficient modules having a higher chance of being chosen. We introduce a novel technique that allows training two separate models in a single training step whilst promoting one of them to be more power efficient than the other while maintaining similar accuracy. The results demonstrate a reduction in power consumption of ANN models by up to 29.2% without a significant decrease in predictive performance.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks. Prior methods have been focused on overcoming this problem on convolutional neural networks (CNNs), where the input samples like images lie in a grid domain, but have largely overlooked graph neural networks (GNNs) that handle non-grid data. In this paper, we propose a novel scheme dedicated to overcoming catastrophic forgetting problem and hence strengthen continual learning in GNNs. At the heart of our approach is a generic module, termed as topology-aware weight preserving~(TWP), applicable to arbitrary form of GNNs in a plug-and-play fashion. Unlike the main stream of CNN-based continual learning methods that rely on solely slowing down the updates of parameters important to the downstream task, TWP explicitly explores the local structures of the input graph, and attempts to stabilize the parameters playing pivotal roles in the topological aggregation. We evaluate TWP on different GNN backbones over several datasets, and demonstrate that it yields performances superior to the state of the art. Code is publicly available at \url{//github.com/hhliu79/TWP}.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.