亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The human mental search (HMS) algorithm is a relatively recent population-based metaheuristic algorithm, which has shown competitive performance in solving complex optimisation problems. It is based on three main operators: mental search, grouping, and movement. In the original HMS algorithm, a clustering algorithm is used to group the current population in order to identify a promising region in search space, while candidate solutions then move towards the best candidate solution in the promising region. In this paper, we propose a novel HMS algorithm, HMS-OS, which is based on clustering in both objective and search space, where clustering in objective space finds a set of best candidate solutions whose centroid is then also used in updating the population. For further improvement, HMSOS benefits from an adaptive selection of the number of mental processes in the mental search operator. Experimental results on CEC-2017 benchmark functions with dimensionalities of 50 and 100, and in comparison to other optimisation algorithms, indicate that HMS-OS yields excellent performance, superior to those of other methods.

相關內容

A tree-based online search algorithm iteratively simulates trajectories and updates Q-value information on a set of states represented by a tree structure. Alternatively, policy gradient based online search algorithms update the information obtained from simulated trajectories directly onto the parameters of the policy and has been found to be effective. While tree-based methods limit the updates from simulations to the states that exist in the tree and do not interpolate the information to nearby states, policy gradient search methods do not do explicit exploration. In this paper, we show that it is possible to combine and leverage the strengths of these two methods for improved search performance. We examine the key reasons behind the improvement and propose a simple yet effective online search method, named Exploratory Policy Gradient Search (ExPoSe), that updates both the parameters of the policy as well as search information on the states in the trajectory. We conduct experiments on complex planning problems, which include Sokoban and Hamiltonian cycle search in sparse graphs and show that combining exploration with policy gradient improves online search performance.

This paper introduces a probabilistic framework to estimate parameters of an acquisition function given observed human behavior that can be modeled as a collection of sample paths from a Bayesian optimization procedure. The methodology involves defining a likelihood on observed human behavior from an optimization task, where the likelihood is parameterized by a Bayesian optimization subroutine governed by an unknown acquisition function. This structure enables us to make inference on a subject's acquisition function while allowing their behavior to deviate around the solution to the Bayesian optimization subroutine. To test our methods, we designed a sequential optimization task which forced subjects to balance exploration and exploitation in search of an invisible target location. Applying our proposed methods to the resulting data, we find that many subjects tend to exhibit exploration preferences beyond that of standard acquisition functions to capture. Guided by the model discrepancies, we augment the candidate acquisition functions to yield a superior fit to the human behavior in this task.

Preference-based optimization algorithms are iterative procedures that seek the optimal value for a decision variable based only on comparisons between couples of different samples. At each iteration, a human decision-maker is asked to express a preference between two samples, highlighting which one, if any, is better than the other. The optimization procedure must use the observed preferences to find the value of the decision variable that is most preferred by the human decision-maker, while also minimizing the number of comparisons. In this work, we propose GLISp-r, an extension of a recent preference-based optimization procedure called GLISp. The latter uses a Radial Basis Function surrogate to describe the tastes of the individual. Iteratively, GLISp proposes new samples to compare with the current best candidate by trading off exploitation of the surrogate model and exploration of the decision space. In GLISp-r, we propose a different criterion to use when looking for a new candidate sample that is inspired by MSRS, a popular procedure in the black-box optimization framework (which is closely related to the preference-based one). Compared to GLISp, GLISp-r is less likely to get stuck on local optimizers of the preference-based optimization problem. We motivate this claim theoretically, with a proof of convergence, and empirically, by comparing the performances of GLISp and GLISp-r on different benchmark optimization problems.

We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality with respect to cluster assignments and cluster center positions. The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions, satisfying some mild assumptions. The main advantage of the proposed approach is a simple and computationally cheap update rule. Unlike previous methods that specialize to a specific formulation of the clustering problem, our approach is applicable to a wide range of costs, including non-Bregman clustering methods based on the Huber loss. We analyze the convergence of the proposed algorithm, and show that it converges to the set of appropriately defined fixed points, under arbitrary center initialization. In the special case of Bregman cost functions, the algorithm converges to the set of centroidal Voronoi partitions, which is consistent with prior works. Numerical experiments on real data demonstrate the effectiveness of the proposed method.

Much of recent Deep Reinforcement Learning success is owed to the neural architecture's potential to learn and use effective internal representations of the world. While many current algorithms access a simulator to train with a large amount of data, in realistic settings, including while playing games that may be played against people, collecting experience can be quite costly. In this paper, we introduce a deep reinforcement learning architecture whose purpose is to increase sample efficiency without sacrificing performance. We design this architecture by incorporating advances achieved in recent years in the field of Natural Language Processing and Computer Vision. Specifically, we propose a visually attentive model that uses transformers to learn a self-attention mechanism on the feature maps of the state representation, while simultaneously optimizing return. We demonstrate empirically that this architecture improves sample complexity for several Atari environments, while also achieving better performance in some of the games.

Inspired by biological evolution, we explain the rationality of Vision Transformer by analogy with the proven practical Evolutionary Algorithm (EA) and derive that both of them have consistent mathematical representation. Analogous to the dynamic local population in EA, we improve the existing transformer structure and propose a more efficient EAT model, and design task-related heads to deal with different tasks more flexibly. Moreover, we introduce the spatial-filling curve into the current vision transformer to sequence image data into a uniform sequential format. Thus we can design a unified EAT framework to address multi-modal tasks, separating the network architecture from the data format adaptation. Our approach achieves state-of-the-art results on the ImageNet classification task compared with recent vision transformer works while having smaller parameters and greater throughput. We further conduct multi-modal tasks to demonstrate the superiority of the unified EAT, e.g., Text-Based Image Retrieval, and our approach improves the rank-1 by +3.7 points over the baseline on the CSS dataset.

Imitation learning enables agents to reuse and adapt the hard-won expertise of others, offering a solution to several key challenges in learning behavior. Although it is easy to observe behavior in the real-world, the underlying actions may not be accessible. We present a new method for imitation solely from observations that achieves comparable performance to experts on challenging continuous control tasks while also exhibiting robustness in the presence of observations unrelated to the task. Our method, which we call FORM (for "Future Observation Reward Model") is derived from an inverse RL objective and imitates using a model of expert behavior learned by generative modelling of the expert's observations, without needing ground truth actions. We show that FORM performs comparably to a strong baseline IRL method (GAIL) on the DeepMind Control Suite benchmark, while outperforming GAIL in the presence of task-irrelevant features.

Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.

Estimating post-click conversion rate (CVR) accurately is crucial for ranking systems in industrial applications such as recommendation and advertising. Conventional CVR modeling applies popular deep learning methods and achieves state-of-the-art performance. However it encounters several task-specific problems in practice, making CVR modeling challenging. For example, conventional CVR models are trained with samples of clicked impressions while utilized to make inference on the entire space with samples of all impressions. This causes a sample selection bias problem. Besides, there exists an extreme data sparsity problem, making the model fitting rather difficult. In this paper, we model CVR in a brand-new perspective by making good use of sequential pattern of user actions, i.e., impression -> click -> conversion. The proposed Entire Space Multi-task Model (ESMM) can eliminate the two problems simultaneously by i) modeling CVR directly over the entire space, ii) employing a feature representation transfer learning strategy. Experiments on dataset gathered from Taobao's recommender system demonstrate that ESMM significantly outperforms competitive methods. We also release a sampling version of this dataset to enable future research. To the best of our knowledge, this is the first public dataset which contains samples with sequential dependence of click and conversion labels for CVR modeling.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司