亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For an input graph $G=(V, E)$ and a source vertex $s \in V$, the \emph{$\alpha$-approximate vertex fault-tolerant distance sensitivity oracle} (\emph{$\alpha$-VSDO}) answers an $\alpha$-approximate distance from $s$ to $t$ in $G-x$ for any query $(x, t)$. It is a data structure version of the so-called single-source replacement path problem (SSRP). In this paper, we present a new \emph{nearly linear time} algorithm of constructing the $(1 + \epsilon)$-VSDO for any weighted directed graph of $n$ vertices and $m$ edges with integer weights in range $[1, W]$, and any positive constant $\epsilon \in (0, 1]$. More precisely, the presented oracle attains $\tilde{O}(m / \epsilon + n /\epsilon^2)$ construction time, $\tilde{O}(n/ \epsilon)$ size, and $\tilde{O}(1/\epsilon)$ query time for any polynomially-bounded $W$. To the best of our knowledge, this is the first non-trivial result for SSRP/VSDO beating the trivial $\tilde{O}(mn)$ computation time for directed graphs with polynomially-bounded edge weights. Such a result has been unknown so far even for the setting of $(1 + \epsilon)$-approximation. It also implies that the known barrier of $\Omega(m\sqrt{n})$ time for the exact SSRP by Chechik and Magen~[ICALP2020] does not apply to the case of approximation.

相關內容

We consider composition orderings for linear functions of one variable. Given $n$ linear functions $f_1,\dots,f_n$ and a constant $c$, the objective is to find a permutation $\sigma$ that minimizes/maximizes $f_{\sigma(n)}\circ\dots\circ f_{\sigma(1)}(c)$. It was first studied in the area of time-dependent scheduling, and known to be solvable in $O(n\log n)$ time if all functions are nondecreasing. In this paper, we present a complete characterization of optimal composition orderings for this case, by regarding linear functions as two-dimensional vectors. We also show several interesting properties on optimal composition orderings such as the equivalence between local and global optimality. Furthermore, by using the characterization above, we provide a fixed-parameter tractable (FPT) algorithm for the composition ordering problem for general linear functions, with respect to the number of decreasing linear functions. We next deal with matrix multiplication orderings as a generalization of composition of linear functions. Given $n$ matrices $M_1,\dots,M_n\in\mathbb{R}^{m\times m}$ and two vectors $w,y\in\mathbb{R}^m$, where $m$ denotes a positive integer, the objective is to find a permutation $\sigma$ that minimizes/maximizes $w^\top M_{\sigma(n)}\dots M_{\sigma(1)} y$. The problem is also viewed as a generalization of flow shop scheduling through a limit. By this extension, we show that the multiplication ordering problem for $2\times 2$ matrices is solvable in $O(n\log n)$ time if all the matrices are simultaneously triangularizable and have nonnegative determinants, and FPT with respect to the number of matrices with negative determinants, if all the matrices are simultaneously triangularizable. As the negative side, we finally prove that three possible natural generalizations are NP-hard: 1) when $m=2$, 2) when $m\geq 3$, and 3) the target version of the problem.

We study the task of efficiently sampling from a Gibbs distribution $d \pi^* = e^{-h} d {vol}_g$ over a Riemannian manifold $M$ via (geometric) Langevin MCMC; this algorithm involves computing exponential maps in random Gaussian directions and is efficiently implementable in practice. The key to our analysis of Langevin MCMC is a bound on the discretization error of the geometric Euler-Murayama scheme, assuming $\nabla h$ is Lipschitz and $M$ has bounded sectional curvature. Our error bound matches the error of Euclidean Euler-Murayama in terms of its stepsize dependence. Combined with a contraction guarantee for the geometric Langevin Diffusion under Kendall-Cranston coupling, we prove that the Langevin MCMC iterates lie within $\epsilon$-Wasserstein distance of $\pi^*$ after $\tilde{O}(\epsilon^{-2})$ steps, which matches the iteration complexity for Euclidean Langevin MCMC. Our results apply in general settings where $h$ can be nonconvex and $M$ can have negative Ricci curvature. Under additional assumptions that the Riemannian curvature tensor has bounded derivatives, and that $\pi^*$ satisfies a $CD(\cdot,\infty)$ condition, we analyze the stochastic gradient version of Langevin MCMC, and bound its iteration complexity by $\tilde{O}(\epsilon^{-2})$ as well.

Unsupervised learning-based anomaly detection in latent space has gained importance since discriminating anomalies from normal data becomes difficult in high-dimensional space. Both density estimation and distance-based methods to detect anomalies in latent space have been explored in the past. These methods prove that retaining valuable properties of input data in latent space helps in the better reconstruction of test data. Moreover, real-world sensor data is skewed and non-Gaussian in nature, making mean-based estimators unreliable for skewed data. Again, anomaly detection methods based on reconstruction error rely on Euclidean distance, which does not consider useful correlation information in the feature space and also fails to accurately reconstruct the data when it deviates from the training distribution. In this work, we address the limitations of reconstruction error-based autoencoders and propose a kernelized autoencoder that leverages a robust form of Mahalanobis distance (MD) to measure latent dimension correlation to effectively detect both near and far anomalies. This hybrid loss is aided by the principle of maximizing the mutual information gain between the latent dimension and the high-dimensional prior data space by maximizing the entropy of the latent space while preserving useful correlation information of the original data in the low-dimensional latent space. The multi-objective function has two goals -- it measures correlation information in the latent feature space in the form of robust MD distance and simultaneously tries to preserve useful correlation information from the original data space in the latent space by maximizing mutual information between the prior and latent space.

Simultaneously transmitting and reflecting \textcolor{black}{reconfigurable intelligent surface} (STAR-RIS) is a promising implementation of RIS-assisted systems that enables full-space coverage. However, STAR-RIS as well as conventional RIS suffer from the double-fading effect. Thus, in this paper, we propose the marriage of active RIS and STAR-RIS, denoted as ASTARS for massive multiple-input multiple-output (mMIMO) systems, and we focus on the energy splitting (ES) and mode switching (MS) protocols. Compared to prior literature, we consider the impact of correlated fading, and we rely our analysis on the two timescale protocol, being dependent on statistical channel state information (CSI). On this ground, we propose a channel estimation method for ASTARS with reduced overhead that accounts for its architecture. Next, we derive a \textcolor{black}{closed-form expression} for the achievable sum-rate for both types of users in the transmission and reflection regions in a unified approach with significant practical advantages such as reduced complexity and overhead, which result in a lower number of required iterations for convergence compared to an alternating optimization (AO) approach. Notably, we maximize simultaneously the amplitudes, the phase shifts, and the active amplifying coefficients of the ASTARS by applying the projected gradient ascent method (PGAM). Remarkably, the proposed optimization can be executed at every several coherence intervals that reduces the processing burden considerably. Simulations corroborate the analytical results, provide insight into the effects of fundamental variables on the sum achievable SE, and present the superiority of 16 ASTARS compared to passive STAR-RIS for a practical number of surface elements.

Consider a following NP-problem DOUBLE CLIQUE (abbr.: CLIQ$_{2}$): Given a natural number $k>2$ and a pair of two disjoint subgraphs of a fixed graph $G$ decide whether each subgraph in question contains a $k$-clique. I prove that CLIQ$_{2}$ can't be solved in polynomial time by a deterministic TM, which infers $\mathbf{P}\neq \mathbf{NP}$. This proof upgrades the well-known proof of polynomial unsolvability of the partial result with respect to analogous monotone problem CLIQUE (abbr.: CLIQ) as well as my previous presentation that used appropriate 3-value semantics. Note that problem CLIQ$_{2}$ is not monotone and appears more complex than just iterated CLIQ, as the required subgraphs are mutually dependent.

Bayesian inference for Dirichlet-Multinomial (DM) models has a long and important history. The concentration parameter $\alpha$ is pivotal in smoothing category probabilities within the multinomial distribution and is crucial for the inference afterward. Due to the lack of a tractable form of its marginal likelihood, $\alpha$ is often chosen ad-hoc, or estimated using approximation algorithms. A constant $\alpha$ often leads to inadequate smoothing of probabilities, particularly for sparse compositional count datasets. In this paper, we introduce a novel class of prior distributions facilitating conjugate updating of the concentration parameter, allowing for full Bayesian inference for DM models. Our methodology is based on fast residue computation and admits closed-form posterior moments in specific scenarios. Additionally, our prior provides continuous shrinkage with its heavy tail and substantial mass around zero, ensuring adaptability to the sparsity or quasi-sparsity of the data. We demonstrate the usefulness of our approach on both simulated examples and on a real-world human microbiome dataset. Finally, we conclude with directions for future research.

We design new deterministic CONGEST approximation algorithms for \emph{maximum weight independent set (MWIS)} in \emph{sparse graphs}. As our main results, we obtain new $\Delta(1+\epsilon)$-approximation algorithms as well as algorithms whose approximation ratio depend strictly on $\alpha$, in graphs with maximum degree $\Delta$ and arboricity $\alpha$. For (deterministic) $\Delta(1+\epsilon)$-approximation, the current state-of-the-art is due to a recent breakthrough by Faour et al.\ [SODA 2023] that showed an $O(\log^{2} (\Delta W)\cdot \log (1/\epsilon)+\log ^{*}n)$-round algorithm, where $W$ is the largest node-weight (this bound translates to $O(\log^{2} n\cdot\log (1/\epsilon))$ under the common assumption that $W=\text{poly}(n)$). As for $\alpha$-dependent approximations, a deterministic CONGEST $(8(1+\epsilon)\cdot\alpha)$-approximation algorithm with runtime $O(\log^{3} n\cdot\log (1/\epsilon))$ can be derived by combining the aforementioned algorithm of Faour et al.\ with a method presented by Kawarabayashi et al.\ [DISC 2020].

Two graphs $G$ and $H$ are homomorphism indistinguishable over a family of graphs $\mathcal{F}$ if for all graphs $F \in \mathcal{F}$ the number of homomorphisms from $F$ to $G$ is equal to the number of homomorphism from $F$ to $H$. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, cospectrality, and logical equivalences can be characterised as homomorphism indistinguishability relations over various graph classes. For a fixed graph class $\mathcal{F}$, the decision problem HomInd($\mathcal{F}$) asks to determine whether two input graphs $G$ and $H$ are homomorphism indistinguishable over $\mathcal{F}$. The problem HomInd($\mathcal{F}$) is known to be decidable only for few graph classes $\mathcal{F}$. We show that HomInd($\mathcal{F}$) admits a randomised polynomial-time algorithm for every graph class $\mathcal{F}$ of bounded treewidth which is definable in counting monadic second-order logic CMSO2. Thereby, we give the first general algorithm for deciding homomorphism indistinguishability. This result extends to a version of HomInd where the graph class $\mathcal{F}$ is specified by a CMSO2-sentence and a bound $k$ on the treewidth, which are given as input. For fixed $k$, this problem is randomised fixed-parameter tractable. If $k$ is part of the input then it is coNP- and coW[1]-hard. Addressing a problem posed by Berkholz (2012), we show coNP-hardness by establishing that deciding indistinguishability under the $k$-dimensional Weisfeiler--Leman algorithm is coNP-hard when $k$ is part of the input.

Extremely large-scale massive multiple-input multiple-output (XL-MIMO) systems introduce the much higher channel dimensionality and incur the additional near-field propagation effect, aggravating the computation load and the difficulty to acquire the prior knowledge for channel estimation. In this article, an XL-MIMO channel network (XLCNet) is developed to estimate the high-dimensional channel, which is a universal solution for both the near-field users and far-field users with different channel statistics. Furthermore, a compressed XLCNet (C-XLCNet) is designed via weight pruning and quantization to accelerate the model inference as well as to facilitate the model storage and transmission. Simulation results show the performance superiority and universality of XLCNet. Compared to XLCNet, C-XLCNet incurs the limited performance loss while reducing the computational complexity and model size by about $10 \times$ and $36 \times$, respectively.

We study depth separation in infinite-width neural networks, where complexity is controlled by the overall squared $\ell_2$-norm of the weights (sum of squares of all weights in the network). Whereas previous depth separation results focused on separation in terms of width, such results do not give insight into whether depth determines if it is possible to learn a network that generalizes well even when the network width is unbounded. Here, we study separation in terms of the sample complexity required for learnability. Specifically, we show that there are functions that are learnable with sample complexity polynomial in the input dimension by norm-controlled depth-3 ReLU networks, yet are not learnable with sub-exponential sample complexity by norm-controlled depth-2 ReLU networks (with any value for the norm). We also show that a similar statement in the reverse direction is not possible: any function learnable with polynomial sample complexity by a norm-controlled depth-2 ReLU network with infinite width is also learnable with polynomial sample complexity by a norm-controlled depth-3 ReLU network.

北京阿比特科技有限公司