亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a demonstration of image classification using an echo-state network (ESN) relying on a single simulated spintronic nanostructure known as the vortex-based spin-torque oscillator (STVO) delayed in time. We employ an ultrafast data-driven simulation framework called the data-driven Thiele equation approach (DD-TEA) to simulate the STVO dynamics. This allows us to avoid the challenges associated with repeated experimental manipulation of such a nanostructured system. We showcase the versatility of our solution by successfully applying it to solve classification challenges with the MNIST, EMNIST-letters and Fashion MNIST datasets. Through our simulations, we determine that within a large ESN the results obtained using the STVO dynamics as an activation function are comparable to the ones obtained with other conventional nonlinear activation functions like the reLU and the sigmoid. While achieving state-of-the-art accuracy levels on the MNIST dataset, our model's performance on EMNIST-letters and Fashion MNIST is lower due to the relative simplicity of the system architecture and the increased complexity of the tasks. We expect that the DD-TEA framework will enable the exploration of deeper architectures, ultimately leading to improved classification accuracy.

相關內容

MNIST 數據集來自美國國家標準與技術研究所, National Institute of Standards and Technology (NIST). 訓練集 (training set) 由來自 250 個不同人手寫的數字構成, 其中 50% 是高中學生, 50% 來自人口普查局 (the Census Bureau) 的工作人員. 測試集(test set) 也是同樣比例的手寫數字數據。

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

The computational demands of modern AI have spurred interest in optical neural networks (ONNs) which offer the potential benefits of increased speed and lower power consumption. However, current ONNs face various challenges,most significantly a limited calculation precision (typically around 4 bits) and the requirement for high-resolution signal format converters (digital-to-analogue conversions (DACs) and analogue-to-digital conversions (ADCs)). These challenges are inherent to their analog computing nature and pose significant obstacles in practical implementation. Here, we propose a digital-analog hybrid optical computing architecture for ONNs, which utilizes digital optical inputs in the form of binary words. By introducing the logic levels and decisions based on thresholding, the calculation precision can be significantly enhanced. The DACs for input data can be removed and the resolution of the ADCs can be greatly reduced. This can increase the operating speed at a high calculation precision and facilitate the compatibility with microelectronics. To validate our approach, we have fabricated a proof-of-concept photonic chip and built up a hybrid optical processor (HOP) system for neural network applications. We have demonstrated an unprecedented 16-bit calculation precision for high-definition image processing, with a pixel error rate (PER) as low as $1.8\times10^{-3}$ at an signal-to-noise ratio (SNR) of 18.2 dB. We have also implemented a convolutional neural network for handwritten digit recognition that shows the same accuracy as the one achieved by a desktop computer. The concept of the digital-analog hybrid optical computing architecture offers a methodology that could potentially be applied to various ONN implementations and may intrigue new research into efficient and accurate domain-specific optical computing architectures for neural networks.

Qualitative probabilistic networks (QPNs) combine the conditional independence assumptions of Bayesian networks with the qualitative properties of positive and negative dependence. They formalise various intuitive properties of positive dependence to allow inferences over a large network of variables. However, we will demonstrate in this paper that, due to an incorrect symmetry property, many inferences obtained in non-binary QPNs are not mathematically true. We will provide examples of such incorrect inferences and briefly discuss possible resolutions.

Head-mounted displays (HMDs) serve as indispensable devices for observing extended reality (XR) environments and virtual content. However, HMDs present an obstacle to external recording techniques as they block the upper face of the user. This limitation significantly affects social XR applications, specifically teleconferencing, where facial features and eye gaze information play a vital role in creating an immersive user experience. In this study, we propose a new network for expression-aware video inpainting for HMD removal (EVI-HRnet) based on generative adversarial networks (GANs). Our model effectively fills in missing information with regard to facial landmarks and a single occlusion-free reference image of the user. The framework and its components ensure the preservation of the user's identity across frames using the reference frame. To further improve the level of realism of the inpainted output, we introduce a novel facial expression recognition (FER) loss function for emotion preservation. Our results demonstrate the remarkable capability of the proposed framework to remove HMDs from facial videos while maintaining the subject's facial expression and identity. Moreover, the outputs exhibit temporal consistency along the inpainted frames. This lightweight framework presents a practical approach for HMD occlusion removal, with the potential to enhance various collaborative XR applications without the need for additional hardware.

We present a novel combination of dynamic embedded topic models and change-point detection to explore diachronic change of lexical semantic modality in classical and early Christian Latin. We demonstrate several methods for finding and characterizing patterns in the output, and relating them to traditional scholarship in Comparative Literature and Classics. This simple approach to unsupervised models of semantic change can be applied to any suitable corpus, and we conclude with future directions and refinements aiming to allow noisier, less-curated materials to meet that threshold.

Obtaining high-resolution, accurate channel topography and deposit conditions is the prior challenge for the study of channelized debris flow. Currently, wide-used mapping technologies including satellite imaging and drone photogrammetry struggle to precisely observe channel interior conditions of mountainous long-deep gullies, particularly those in the Wenchuan Earthquake region. SLAM is an emerging tech for 3D mapping; however, extremely rugged environment in long-deep gullies poses two major challenges even for the state-of-art SLAM: (1) Atypical features; (2) Violent swaying and oscillation of sensors. These issues result in large deviation and lots of noise for SLAM results. To improve SLAM mapping in such environments, we propose an advanced SLAM-based channel detection and mapping system, namely AscDAMs. It features three main enhancements to post-process SLAM results: (1) The digital orthophoto map aided deviation correction algorithm greatly eliminates the systematic error; (2) The point cloud smoothing algorithm substantially diminishes noises; (3) The cross section extraction algorithm enables the quantitative assessment of channel deposits and their changes. Two field experiments were conducted in Chutou Gully, Wenchuan County in China in February and November 2023, representing observations before and after the rainy season. We demonstrate the capability of AscDAMs to greatly improve SLAM results, promoting SLAM for mapping the specially challenging environment. The proposed method compensates for the insufficiencies of existing technologies in detecting debris flow channel interiors including detailed channel morphology, erosion patterns, deposit distinction, volume estimation and change detection. It serves to enhance the study of full-scale debris flow mechanisms, long-term post-seismic evolution, and hazard assessment.

It is well known that to accelerate stencil codes on CPUs or GPUs and to exploit hardware caches and their lines optimizers must find spatial and temporal locality of array accesses to harvest data-reuse opportunities. On FPGAs there is the burden that there are no built-in caches (or only pre-built hardware descriptions for cache blocks that are inefficient for stencil codes). But this paper demonstrates that this lack is also a chance as polyhedral methods can be used to generate stencil-specific cache-structures of the right sizes on the FPGA and to fill and flush them efficiently with wide bursts during stencil execution. The paper shows how to derive the appropriate directives and code restructurings from stencil codes so that the FPGA compiler generates fast stencil hardware. Switching on our optimization improves the runtime of a set of 10 stencils by between 43x and 156x.

We propose a decoder-only language model, VoxtLM, that can perform four tasks: speech recognition, speech synthesis, text generation, and speech continuation. VoxtLM integrates text vocabulary with discrete speech tokens from self-supervised speech features and uses special tokens to enable multitask learning. Compared to a single-task model, VoxtLM exhibits a significant improvement in speech synthesis, with improvements in both speech intelligibility from 28.9 to 5.6 and objective quality from 2.68 to 3.90. VoxtLM also improves speech generation and speech recognition performance over the single-task counterpart. Further, VoxtLM is trained with publicly available data and training recipes and model checkpoints are open-sourced to make fully reproducible work.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司